• Title/Summary/Keyword: Composite number

Search Result 1,282, Processing Time 0.029 seconds

3D FE modeling considering shear connectors representation and number in CBGB

  • Abbu, Muthanna A.;Ekmekyapar, Talha A.;Ozakca, Mustafa A.
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.237-252
    • /
    • 2014
  • The use of composite structures is increasingly present in civil building works. Composite Box Girder Bridges (CBGB), particularly, are study of effect of shear connector's numbers and distribution on the behavior of CBGBs is submitted. A Predicti structures consisting of two materials, both connected by metal devices known as shear connectors. The main functions of these connectors are to allow for the joint behavior of the girder-deck, to restrict longitudinal slipping and uplifting at the element's interface and to take shear forces. This paper presents 3D numerical models of CBGBs to simulate their actual structural behavior, with emphasis on the girder-deck interface. Additionally, a Prediction of several FE models is assessed against the results acquired from a field test. A number of factors are considered, and confirmed through experiments, especially full shear connections, which are obviously essential in composite box girder. A good representation for shear connectors by suitable element type is considered. Numerical predictions of vertical displacements at critical sections fit fairly well with those evaluated experimentally. The agreement between the FE models and the experimental models show that the FE model can aid engineers in design practices of box girder bridges. Preliminary results indicate that number of shear studs can be significantly reduced to facilitate adoption of a new arrangement in modeling CBGBs with full composition. However, a further feasibility study to investigate the practical and economic aspects of such a remedy is recommended, and it may represent partial composition in such modeling.

The Experimental Study on the Collapse Mechanism of CFRP Composite Tubes (CFRP 복합재 튜브의 압괴메카니즘에 관한 실험적 연구)

  • 김영남;차천석;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.149-157
    • /
    • 2002
  • This paper is to investigate collapse mechanisms of CFRP(Carbon Fiber Reinforced Plastics)composite tubes and to evaluate collapse characteristics on the change of interlaiminar number and ply orientation angle of outer under static and impact axial compression loads. When a CFRP composite tube is crushed, static/impact energy is consumed by friction between the loading plate and the splayed fronds of the tube, by fracture of the fibers, matrix and their interface. These are associated with the energy absorption capability. In general, CFRP tube with 6 interlaminar number(C-type), absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CFRP tubes and loading status(static/impact). Typical collapse modes of CFRP tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shown in case of CFRP tubes with 0° orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CFRP tubes with 90°orientation angle of outer under static loadings, however in Impact tests those were collapsed in fragmentation mode .

AN EXPERIMENTAL STUDY ON THE CYTOTOXICITY OF COMPOSITE RESIN ON MOUSE FIBROBLAST IN VITRO (복합(複合)레진의 세포독성(細胞毒性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Chung, Sun-Hee;Chung, Sung-Su
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.158-166
    • /
    • 1991
  • In order to investigate the cytotoxicity of composite resin in vitro, BALB / C mouse fibroblast were cultured in MEM in which silux, P-50, microrest, clearfil, amalgam and glass - ionomer, in shape of $2{\times}9mm$ circular disk. The experiments were- performed by cell count on 4 hours, 1, 3, 6 days and the composite resin groups, amalgam, glass - ionomer were compared. 1. On the sixth day, the cellular number of resin composite groups were remarkedly reduced, in contrast, the that of amalgam and glass - ionomer group continuously increased. 2. It was only on the 4 hours that the cellular number contained in amalgam were reduced, but increased thereafter, and the cellular number contained in glass - ionomer are greater than other groups. 3. In resin group, especially between self - curing resin and light - curing resin, there is no difference in cellular number statistically (p>0.05). 4. It was amalgam where the round cell without cellular process was found on the 4. hours and on the 6 th day the cell without cellular process was found numeroulsy in resin group whereas in amalgam and glass - ionomer, like control group was contained cell forming monolayer. These result suggested that the toxicity of the self - curing and light - curing resin greater than that of the amalgam and glass - ionomer.

  • PDF

Nondestructive Evaluation and Microfailure Modes of Single Fibers/Cement Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 단섬유시멘트복합재료의 미세파괴구조와 비파괴적 평가)

  • Lee, Sang-Il;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.258-262
    • /
    • 2001
  • The contact resistivity was correlated with IFSS and microfailure modes in conductive fiber/cement composites electro-pullout and AE. As IFSS increased, the number of AE signals increased and the contact resistivity increased latter to the infinity. In dual matrix composite (DMC) test and AE, the number of signals with high amplitude and energy in g]ass fiber composite is significantly larger than that of no-fiber composite. Many vertical and diagonal cracks were observed in glass fiber and no-fiber composite under tensile test, respectively. Electro-micromechanical technique and AE can be used efficiently for sensitive nondestructive (NDT) evaluation and to detect microfailure mechanisms in various conductive fibers reinforced brittle and nontransparent cement composites.

  • PDF

MODIFIED SLOPE ROTATABLE CENTRAL COMPOSITE DESIGNS

  • VICTOR BABU B. RE.
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.2
    • /
    • pp.153-160
    • /
    • 2005
  • In this paper, modified second order slope rotatable designs are introduced and modified slope rotatable central composite designs (SRCCD) are constructed for $2 {\le} v {\le} 17$ (v: the number of factors). Further, it can be shown for certain values of 'v', the modified SRCCD can be viewed as SRCCD constructed as with the technique of augmentation of second order rotatable design (SORD) using central composite design to SRCCD. These designs are useful in parts to estimate responses and slopes with spherical variance functions.

Design of Composite Laminate Bicycle Wheel considering Stacking Sequence (적층각을 고려한 복합재료 라미네이트 자전거 휠의 설계)

  • Lee, Jin-Ah;Hong, Hyoung-Taek;Kang, Kyoung-Tak;Chun, Heoung-Jae
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.141-146
    • /
    • 2012
  • The strength design for the lightweight bicycle wheel made of the Carbon/Epoxy composite laminates has been discussed in this paper. For bicycle wheel design, lightness of the wheel is important. Also, it has to satisfy the required strength under specific loading cases. Two testing methods for the bicycle wheel, i.e. vertical and complex loadings, are adopted in this study. Because the strengths of composite wheel is different in relation to the stacking sequence and the number of plies, it is important to decide an appropriate stacking sequence and number of layers for the composite wheel. From the finite element analysis results, the most stable sequence orientation and number of layers are determined. The stacking sequence $[0]_{8n}$, $[90]_{8n}$, $[0/90]_{2ns}$, $[{\pm}45]_{2ns}$, $[0/{\pm}45/90]_{ns}$ (n=1,2,3,4)are performed for finite element analysis. From results, $[0/{\pm}45/90]_{3s}$ lay-up is a good selection for the composite bicycle wheel. Also, the weakest point and layer are found in this study.

Steel-CFRP composite and their shear response as vertical stirrup in beams

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1145-1160
    • /
    • 2015
  • An experimental study was conducted for the effectiveness of steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups in concrete beam to carry shearing force and comparison was made with conventional steel bar stirrups. A total numbers of 8 concrete beams were tested under four point loads. Each beam measured 1,600 mm long, 160 mm width and 240 mm depth. The beams were composed of same grade of concrete, with same amount of flexural steel but different shear reinforcements. The main variables include, type of stirrups (shape of stirrups and number of CFRP layers used in each stirrup) and number of stirrups used in shear spans. After getting on an excellent closeness between the values of ultimate shear resistance and ultimate tensile load of steel-CFRP stirrups, it could be concluded that the steel-CFRP stirrups represent the effective solution of premature failure of FRP stirrups at the bends.

Free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates

  • Altunsaray, Erkin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.493-508
    • /
    • 2018
  • Free vibration analysis of super-elliptical composite thin plates was investigated. Plate is formed by symmetrical quasi-isotropic laminates. Rayleigh-Ritz method was used for parametric analysis based on the governing differential equations of Classical Laminated Plate Theory (CLPT). Simply supported and clamped boundary conditions at the periphery of plates were considered. Parametric study was performed for the effect of different lamination type, aspect ratio, thickness and super-elliptical power on natural frequencies. Convergence study and validation of isotropic case were achieved. A number of design parameters like different dimensions, structure systems, panel sizes, panel thicknesses, lamination sequences, boundary conditions and loading conditions must be considered in the production of composite ships. The number of possible combinations practically may be so high that a parametric study should be carried out in order to determine the optimum design parameters rapidly during the preliminary design stage. The use of Rayleigh-Ritz method could make this parametric study possible. Thereby it might be decreasing the consumption of time, material and labor. Certain results for some different super-elliptical powers presented in tabulated form in Appendix for designers as well.

Design of top concrete slabs of composite space trusses

  • El-Sheikh, Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.319-330
    • /
    • 1999
  • The design of composite space trusses is a demanding task that involves taking several decisions on the truss depth, number of panels, member configuration, number of chord layers and concrete slab thickness and grade. The focus in this paper is on the design of top concrete slabs of composite space trusses, and in particular their thickness. Several effects must be considered in the process of designing the slab before an optimum thickness can be chosen. These effects include the inplane forces arising from shear interaction with the steel sub-truss and the flexural. and sheer effects of direct lateral slab loading. They also include a constructional consideration that the thickness must allow for sufficient cover and adequate space for placing the reinforcement. The work presented in this paper shows that the structural requirements on the concrete slab thickness are in many cases insignificant compared with the constructional requirements.

Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: an experimental study

  • Le, Van Phuoc Nhan;Bui, Duc Vinh;Chu, Thi Hai Vinh;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1001-1019
    • /
    • 2016
  • The connector is the most important part of a composite beam and promotes a composite action between a steel beam and concrete slab. This paper presents the experiment results for three large-scale beams with a newly puzzle shape of crestbond. The behavior of this connector in a composite beam was investigated, and the results were correlated with those obtained from push-out-test specimens. Four-point-bending load testing was carried out on steel-concrete composite beam models to consider the effects of the concrete strength, number of transverse rebars in the crestbond, and width of the concrete slab. Then, the deflection, ultimate load, and strains of the concrete, steel beam, and crestbond; the relative slip between the steel beam and the concrete slab at the end of the beams; and the failure mechanism were observed. The results showed that the general behavior of a steel-concrete composite beam using the newly puzzle shape of crestbond shear connectors was similar to that of a steel-concrete composite beam using conventional shear connectors. These newly puzzle shape of crestbond shear connectors can be used as shear connectors, and should be considered for application in composite bridges, which have a large number of steel beams.