• Title/Summary/Keyword: Composite joint

Search Result 707, Processing Time 0.02 seconds

The Torque Transmission Capacities of the Adhesive Tubular Lap Joint (접착제로 접착된 원형 겹치기이음의 토크 전달특성 연구)

  • 최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-92
    • /
    • 1994
  • With the wide application of fiber-reinforced composite meterial in aircraft space structures and robot arms, the design and manufacture of composite joints have become a very important research area because they are often the weakest areas in composite structure. In this paper, the torque transmission capacities of the adhesive tubular single lap joint and double lap joint were studied. The stress and torque transmission capacity of the adhesive joints were analyzed by the finite element method and compared to the experimental results. The torque capacity of the double lap joint was increased 2.7 times over that of the single lap joint. Also, the fatigue limit of the double lap joint was increased 16 times over that of the single lap joint.

Prediction of the Torque Capacity for Tubular Adhesive Joints with Composite Adherends (복합재료 접착체를 가지는 튜브형 접합부의 토크전달능력 예측)

  • Oh, Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1543-1550
    • /
    • 2006
  • Since the performance of joints usually determines the structural efficiency of composite structures, an extensive knowledge of the behavior of adhesive joints and the related effect on joint strength is essential for design purposes. In this study, the torque capacity of adhesive joints was predicted using the combined thermal and mechanical analyses when the adherend was a composite tube. A finite element analysis was performed to evaluate residual thermal stresses developed in the joint, and mechanical s stresses in the adhesive were calculated including both the nonlinear adhesive behavior and the behavior of composite tubes. Three different joint failure modes were considered to predict joint failure: interfacial failure, adhesive bulk failure, and adherend failure. The influence of the composite adherend stacking angle on the residual thermal stresses was investigated, and how the residual thermal stresses affect the joint strength was also discussed. Finally, the predicted results were compared with experimental results available in literature.

A Study on the strength of the Bolted Joint & Pin Joint with Hole Clearance (원공공차를 가진 볼트 조인트와 핀 조인트의 강도평가에 관한 연구)

  • Jeong, Kang-Woo;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.186-190
    • /
    • 2012
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, composite joint have become a very important research area because they are often the weakest sites in composite structures. In this paper, the failure strengths of the bolted joint and pin joint which have variable hole clearance were evaluated and compared. From the tests, the first failure loads of the bolted joint and pin joint with $880{\mu}m$ hole clearance have decreased by 24.2 % and 51.3 % compared to those of joints with $0{\mu}m$ hole clearance, respectively. Also, the failure index of the joints were calculated by the finite element method and compared with experimental results.

Optimum Design of Co-cured Steel-Composite Tubular Single Lap Joints (동시경화 강철-복합재료 원형 단일 겹치기 조인트의 최적설계)

  • Jo, Deok-Hyeon;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1203-1214
    • /
    • 2000
  • In this paper, a failure model for co-cured steel-composite tubular single lap joints has been proposed incorporating the nonlinear mechanical behavior of steel adherends and different failure mode s such as steel adherend failure and composite adherend failure. The characteristics of the co-cured steel-composite tubular single lap joint were investigated with respect to the test temperature, the stacking sequence of composite adherend, the thickness ratio of steel adherend to composite adherend, and the scarf ratio of steel adherend. Thus, the optimum design method for the co-cured steel-composite tubular single lap joint was suggested.

Design Optimization of Double-array Bolted Joints in Cylindrical Composite Structures

  • Kim, Myungjun;Kim, Yongha;Kim, Pyeunghwa;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.332-340
    • /
    • 2016
  • A design optimization is performed for the double-bolted joint in cylindrical composite structures by using a simplified analytical method. This method uses failure criteria for the major failure modes of the bolted composite joint. For the double-bolted joint with a zigzag arrangement, it is necessary to consider an interaction effect between the bolt arrays. This paper proposes another failure mode which is determined by angle and distance between two bolts in different arrays and define a failure criterion for the failure mode. The optimal design for the double-bolted joint is carried out by considering the interactive net-tension failure mode. The genetic algorithm (GA) is adopted to determine the optimized parameters; bolt spacing, edge distance, and stacking sequence of the composite laminate. A purpose of the design optimization is to maximize the burst pressure of the cylindrical structures by ensuring structural integrity. Also, a progressive failure analysis (PFA) is performed to verify the results of the optimal design for the double-bolted joint. In PFA, Hashin 3D failure criterion is used to determine the ply that would fail. A stiffness reduction model is then used to reduce the stiffness of the failed ply for the corresponding failure mode.

Fatigue Strength of Composite Joint Structures Reinforced by Jagged Shaped Stainless Steel Z-pins (요철 형상의 스테인레스강 Z-핀으로 보강된 복합재 접합 구조물의 피로강도)

  • Choi, Ik-Hyeon;Lim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.967-974
    • /
    • 2013
  • Recently the authors had proposed the z-pinning patch concept to simply manufacture z-pinned composite structures at industrial production site and manufactured composite single-lap shear joint specimens using the concept. Through static tensile test on the specimens they had obtained 54~68% improvement of the joint strength. As a sequential study of it, in this study, fatigue test has performed to measure an improvement of joint strength under cyclic loading. The z-pin's material is stainless steel and its surface was specially machined into zagged shapes and chemically corroded to increase the connection force with composite materials. Approximately 98~125% improvement of the joint strength under cyclic loading was obtained.

Fatigue Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 Hybrid차체 접합체결부의 피로 특성 평가)

  • Jung, Dal-Woo;Kim, Duck-Jae;Choi, Se-Hyun;Seo, Sueng-Il;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.260-263
    • /
    • 2005
  • Fatigue fracture behavior of a hybrid joint between side-panel and under-frame by riveting and adhesive bonding has been evaluated. Two kinds of joint specimens based on real geometry were fabricated for shearing test as well as bending test. Static and cyclic loadings were used for fatigue assessment. Fatigue fracture results obtained by such experiments were reflected in modifications of design parameters of the hybrid joint.

  • PDF

Design parameters on the fatigue characteristics of a co-cured double lap joint (양면겹치기 동시경화조인트의 피로특성에 영향을 미치는 설계변수에 관한 연구)

  • 신금철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.5-8
    • /
    • 2002
  • The use of the co-cured joining method for composite structures is attractive due to several benefits. However, since the design stress level in cyclic loads is often smaller than the joint strength obtained from the static tensile load test, it is important to establish proper fatigue design criteria. Although some researchers have reported on co-cured joints, there are only a few papers published on the fatigue characteristics of co-cured joints. In this paper, the effect of bond parameters on the fatigue characteristics of a steel-composite co-cured double lap joint under cyclic tensile loads was experimentally investigated. We considered the surface roughness of the steel adherend and the stacking sequence of the composite adherend as bond parameters. A fatigue failure mechanism of the co-cured double lap joint was explained systematically by investigating the surfaces of failed specimens.

  • PDF

Parametric Study on the Joint Strength of Unidirectional and Fabric Hybrid Laminate (일방향-평직 복합재 혼합 적층판의 기계적 체결부 강도에 관한 인자연구)

  • 안현수;신소영;권진회;최진호;이상관;양승운
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.9-12
    • /
    • 2002
  • A parametric study has been conducted to investigate the effect of the geometry on the strength of an unidirectional and fabric hybrid laminated composite joint. Tests are conducted for the specimens with nine different edge-to-hole diameter or width-to-hole diameter ratios. For the finite element analysis, the characteristic length method is used, and the tests for determining the characteristic length are performed additionally. Nonlinear contact problem between the pin and laminate is modeled by the gap element in MSC/NASTRAN. Tsai-Wu failure criteria is applied to the stress on the characteristic curve. The finite element and experimental results shows good agreement in strength of composite joint. Results of the parametric study shows the effect of the geometry is remarkable in the specimens with width-to-hole diameter ratio less than 2.8 and edge-to-hole diameter ratio less than 1.4.

  • PDF

Optimal design of the co-cured aluminum/composite double lap joint (탄소섬유/에폭시 복합재료-알루미늄 양면겹치기 동시경화 조인트의 최적설계)

  • Park Sang Wook;Kim Hak Sung;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.78-82
    • /
    • 2004
  • The co-cured joint has been widely used in joining process of composite structures due to its simple and easy manufacturing process. In this paper, the effect of stacking sequence of the carbon epoxy prepreg, bonding length and thickness of the aluminum plate on the static tensile load capability of the co-cured aluminum-composite double lap joint were experimentally investigated. From experimental results, the optimum EA ratios with respect to stacking sequence and bonding length of the co-cured joint were obtained, which may be useful for the joining of hybrid structures.

  • PDF