• Title/Summary/Keyword: Composite hardness

Search Result 699, Processing Time 0.019 seconds

Microstructures and Mechanical Properties of Al-Cu Eutectic Composite by Upward Continuous Casting (상향식 연속주조법으로 제조한 Al-Cu 공정 복합재료의 응고조직 및 기계적 성질)

  • Kwon, Kee-Kyun;Sunwoo, Kuk-Hyun;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 1990
  • Continuous casting of the $Al-CuAl_2$ eutectic composite was carried out by the upward continuous casting process. The morphology of the eutectic growth and the stability of solid-liquid interface were investigated under various growth conditions. It was possible to get the planar solid-liquid interface at the condition of $G_L/R$$3.6{\times}10^3^{\circ}Csec/mm^2$. And the colony structures were formed at the conditions of $G_L/R$ < $R=0.33{\times}10^3^{\circ}Csec/mm^2$. The inter-lamellar spacing of $Al-CuAl_2$ eutectic composite was decreased with the increase of pulling speed. The reduction of inter-lamellar spacing & value of $G_L/R$ caused the increase of ultimate tensile strength and Rockwell hardness in $Al-CuAl_2$ eutectic composite.

  • PDF

Study on Sintering Properties of $TiB_2-TiC$ Composite by Self-Propagating High Temperature Synthesis Method (SHS법에 의한 $TiB_2-TiC$ 복합체의 소결특성에 관한 연구)

  • 이형복;조덕호;장준원
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.577-585
    • /
    • 1992
  • TiB2 and TiC were prepared from the mixture of metal titanium, boron and graphite powders in Argon atmosphere by Self-propagating High-temperature Synthesis method. The sintered properties of TiB2-TiC composite as a function of TiC content and sintering temperature were investigated in TiB2 matrix. The sintered properties were the most excellent at 10 wt% TiC content in TiB2-TiC composite. The relative density, M.O.R strength, hardness and fracture toughness of TiB2-10 wt% TiC composite sintered at 190$0^{\circ}C$ for 90 min by hot-pressing under the pressure of 30 MPa were 98.6%, 634 MPa, 2128.1 kg/$\textrm{mm}^2$ and 4.09 MN/m3/2, respectively.

  • PDF

Preparation of Al-SiCp Composite Coating by Plasma Thermal Spray (플라즈마 용사에 의한 Al-SiCp 복합재료 코팅층의 제조)

  • 민준원;유승을;김영정;김정석;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.460-467
    • /
    • 2003
  • Al-SiC$_{p}$ composite layer was prepared by plasma thermal spray on aluminum substrate using composite powder prepared by mechanical alloying. Mechanically alloyed powder was achieved after 24 h milling, which was used for thermal spray coating. The correlations between process conditions and thickness/porosity were analyzed, and increase of hardness was confirmed. The presence of Al-Si-C-O compound was detected by TEM analysis.

Fabrication of WC-17%Co Composite Powder for Thermal Spray by Spray-Drying Method and HVOF Thermal Spray Characteristics (분무건조법에 의한 용사용 WC-17%Co 복합분말제조 및 HVOF(High Velocity Oxy-Fuel) 용사특성)

  • 설동욱;김병희;임영우;정민석;서동수
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.101-108
    • /
    • 1996
  • In this study, WC-l7wt% Co composite powder for thermal spray was fabricated by spray drying method. The agglomerated composite powder had spheroidal morphology and the particle size distribution was 20~60${\mu}{\textrm}{m}$. WC and Co were distributed homogeneously. However, the strength of the spray-dried agglomerate was low due to the pores within the agglomerate. Therefore, the spray-dried agglomerate was broken down during HVOF thermal spray and the microstructure was inhomogeneous with many pores within the coating layer. And the decomposition of WC to W and $W_{6}$ $C_{2.54}$ was accelerated. The strength and flowability of the agglomerate were greatly improved by sintering heat treatment(110$0^{\circ}C$, 1 hour, hi atmosphere), and then the coating layer showed dense and homogeneous microstructure with well-developed splats. The hardness of the coating layer was H $v_{300}$ = 1072.2.2.

  • PDF

Synthesis of Cu/Al2O3 Nanostructured Composite Powders for Electrode Application by Thermochemical Process (열화학적 방법에 의한 전극용 나노 Cu/Al2O3 복합분말 합성)

  • 이동원;배정현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.337-343
    • /
    • 2003
  • Nanostructured Cu-$Al_2O_3$ composite powders were synthesized by thermochemical process. The synthesis procedures are 1) preparation of precursor powder by spray drying of solution made from water-soluble copper and aluminum nitrates, 2) air heat treatments to evaporate volatile components in the precursor powder and synthesis of nano-structured CuO + $Al_2O_3$, and 3) CuO reduction by hydrogen into pure Cu. The suggested procedures stimulated the formation of the gamma-$Al_2O_3$, and different alumina formation behaviors appeared with various heat treating temperatures. The mean particle size of the final Cu/$Al_2O_3$ composite powders produced was 20 nm, and the electrical conductivity and hardness in the hot-extruded bulk were competitive with Cu/$Al_2O_3$ composite by the conventional internal oxidation process.

Wear Characteristics of Al/SiCp Composites (SiC입자강화 알루미늄기 복합재료의 마모특성)

  • Kim, Sug-Won;Park, Jin-Sung;Ogi, K.
    • Journal of Korea Foundry Society
    • /
    • v.22 no.4
    • /
    • pp.184-191
    • /
    • 2002
  • This study aims to investigate on the effects of alloying elements and heat treatment on the microstructures, wear and heat resistance of Al-Si-Cu-Mg-(Ni)/SiCp prepared by the duplex process developed in previous study, which consists of squeeze infiltration (1st process) and squeeze casting (2nd process). The hardness of composite increased with decrease in SiCp size and Ni addition in both the heat exposured composite and the as-cast one. And the heat and wear resisting properties was improved by the SiCp reinforcement and the Ni addition. The wear amount of Al/SiCp composite decreased with decreasing in the size of silicon carbide particle.

A study on the wear resistance of Ni-SiC composite plating (Ni-SiC 복합도금층의 내마모성에 관한 연구)

  • 김성호;한혜원;장현구
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.1
    • /
    • pp.26-35
    • /
    • 1996
  • The Ni-SiC composite plating was performed in a Watt nickel solution and the wear resistance of the composite layer was studied on a pin-on-flat type wear tester. The volume losses and friction coefficients were measured. It was found that the quantity of SiC powder in the composite layers was affected by SiC concentration, pH, temperature, and agitation speed in the Watt nickel solution. The hardness and wear resistance of the coatings increased with SiC content. The quantity of SiC powder in the coating from a nickel sulfamate solution is larger than that of the Watt nickel solution, because the amount of nickel ions absorbed on the SiC powder in the nickel sulfamate solution is greater than that in the Watt's solution.

  • PDF

Fabrication of Quasi-crystal Strengthened Aluminum Composites by Mechanical Milling Process (기계적 밀링 공정을 이용한 준결정 강화 알루미늄 복합재료의 제조)

  • Jang Woo Kil;Shin Kwang Seon
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.208-213
    • /
    • 2005
  • Aluminum matrix composites strengthened by the quasi-crystalline (QC) phase were developed in the present study. The icosahedral $Al_{65}Cu_{20}Fe_{15}$ phase was produced by gravity casting and subsequent heat treatment. The mechanical milling process was utilized in order to produce the Al/QC composite powders. The microstructures of the composite powders were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The composite powders were subsequently canned, degassed and extruded in order to produce the bulk composite extrusions with various volume fractions of QC. The microstructure and mechanical properties of the extrusions were examined by OM, SEM, Vickers hardness tests and compression tests. It was found that the microstructures of the Al/QC composites were uniform and the mechanical properties could be significantly improved by the addition of the QC phase.

A Study on the Machinability and Machining properties of Composite Ceramics$(iC-Al_2O_3)$ by EDM (복합 세라믹스$(iC-Al_2O_3)$의 방전가공특성에 관한 연구)

  • 윤병주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.61-68
    • /
    • 1995
  • TiC-Al2O3 composite ceramics has high hardness, high strength, high wear and corrosion resistance. Therefore, composite ceramics have been concerned significantly with some excellent properties and many functions as new industrial materials to the industry at large. In present research, experiments are carried out to obtain the machinability and machining properties by EDM. As a result, the most suitable machining conditions of TiC-Al2O3 composite ceramics was that the pulse duration is 10-60$mutextrm{s}$, the peak current is 10-16A. The machining speed and the wear of the tool electrode increased with the increase in peak current.

  • PDF

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.