• Title/Summary/Keyword: Composite extrusion

Search Result 147, Processing Time 0.023 seconds

Composite Material made of Recycling Paper and Plastics (폐지를 활용한 재생 플라스틱)

  • 윤승원;이장용;김윤식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.697-702
    • /
    • 2002
  • Composite material made of recycling paper and plastics was developed. The tension and bending testing result of developed composite material shows that the cellulose contained in paper contributes much to get high flexural rigidity. As an application example, the raised access floor for office automation purpose was developed by making use of developed composite material. Manufacturing process together with the extrusion die and the compression die for to manufacture the access floor have been developed.

  • PDF

A Study on Hot Extrusion Characteristics of Particulate Reinforced Aluminium Matrix Composite. (입자분산강화 알루미늄 복합재의 압출가공특성에 관한 연구)

  • Gwon, Hyeok-Cheon;Yun, Ui-Park
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.953-959
    • /
    • 1995
  • It was investigated that reinforced species, billet condition and extrusion variation in Al 6061 composite material effected on extrusion process of particulate reinforced composite material. The strength of composite material with reinforcement species revealed SiC$\sub$w/> A1$_2$O$\sub$3f/ > A1$_2$O$\sub$3f/ > A1$_2$O$\sub$3f/ orderly. K$\sub$w/ increased as volute fraction increased in all composite material. The composite materials reinforced by A1$_2$ $O_3$required the larger pressure in hot extrusion process than those by SiC$\sub$p/ at all condition. Extrusion process tended to decrease as the semi-angle of extrusion dies increased because larger contact area caused larger shear friction. Extrusion temperature went up about 50$^{\circ}C$ in low elevated deformation temperature. In extrusion temperature above 500$^{\circ}C$, severe tearing occurred on extrusion surface. More reinforcement in volume fraction, more hot tearing.

  • PDF

A study on the Fabrication of Copper-clad Aluminum Composite using Hydrostatic Extrusion (정수압 압출을 이용한 Copper-clad Aluminum 복합계 제조에 대한 연구)

  • 한운용;이경엽;박훈재;윤덕계;김승수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.179-184
    • /
    • 2004
  • In this work, a copper-clad aluminum composite was fabricated using hot hydrostatic extrusion with various extrusion ratios (8.5, 19, 49) and semi-die angles (30, 45, 60 degree) at a temperature of 32$0^{\circ}C$, Material characteristics of copper-clad aluminum composites were determined from compression tests and hardness tests The results showed that for ER of 8.5, the optimum semi-die angle was below or equal to 30 degree and a pressure drop was about 31%. For ER of 19, the optimum semi-die angle was in the range of 40 to 50 degree and a pressure drop was about 38%. In the case of ER=49, the optimum semi-die angle was above or equal to 60 degree and a pressure drop was about 36%. Compressive yield strength was maximum for ER of 8.5 and semi-die angle of 30 degree and the value of maximum was 155 MPa. Uniform hardness distribution was obtained as the extrusion ratio increases and the semi-die angle decreases. In the case of ER=8.5 and semi-die angle of 30 degree, the lowest extrusion pressure and the maximum compressive yield strength was obtained. Therefor, it was concluded that the optimum extrusion condition for fabricated copper-clad aluminum composites under hydrostatic pressure environment was ER of 19 and semi-die angle of 30 degree.

Study on the Preparation of the Piezoelectric Composite Materials in PZT Ceramics-Polymers by Extrusion Method and its Properties (압출가공방법에 의한 PZT세라믹스-고분자 압전복합재료의 제조 및 특성 연구)

  • 이덕출;김진수
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.74-78
    • /
    • 1990
  • In this study, to develope the ultrasonic transducer element, the extrusion method which is the processing technique of the piezoelectric composite materials is introduced, the connectivity of the piezoelectric composite materials is the 1-3 type, and we study the properties of the materials. The electromechanical coupling factor(kt) of the materials is above 0.6, the resonance property(fr) is the thickness mode in the frequency range of 0.5 to 2 [MHz] and the acoustic impedance(Zac) is about 5 to 7 [Maryl]. From these results, it is known that the piezoelectric composite materials manufactured byt he extrusion method will be able to develope the ultrasonic transducer elements.

  • PDF

Interface Bonding of Copper Clad Aluminum Rods by the Direct Extrusion (직접압출에 의한 Cu-Al 층상 복합재료 봉의 계면접합)

  • 김희남;윤여권;강원영;박성훈;이승평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.437-440
    • /
    • 2000
  • Composite material consists of more than two materials and make various kinds of composite materials by combining different single materials. Copper clad aluminum composite material is composed of Al and Cu, and it has already been put to practical use in Europe because of its economic benefits. This paper presents the interface bonding according to the variation of extrusion ratio and semi-angle die by observing the interface between Cu and Al using metal microscope. By that result, we can predict the conditions of the interface bonding according to the extruding conditions.

  • PDF

Effect of the Extrusion Ratios on Fiber Breakage and Orientation in Hot Extrusion Process in Metal Matrix Composites (금속복합재료의 열간압출공정에 있어서 압출비가 섬유의 파단 및 배향에 미치는 영향)

  • Kang, C.G.;Kang, S.S.;Kim, B.H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1740-1750
    • /
    • 1993
  • The aluminar short fiber reinforced composite materials for hot extrusion were fabricated by semi-solid stirring method, and extruded at extrusion temperature $400^{\circ}C$ with various extrusion ratio. The hot extrusion load of volume fraction 15% metal matrix composites and base alloy Al7075 has been compared. The fiber length distribution, fiber breakage and fiber orientation are investiged to know the fiber behaviour in before and after hot extrusion. The tensile strength of the hot extruded billet are experimentally determined for different of extrusion ratios, and compared with theorically calculated strength.

A Study on the Weight-Reduction Design of High-Speed Maglev Carbody made of Aluminum Extrusion and Sandwich Composite Roof (알루미늄 압출재와 샌드위치 복합재 루프를 적용한 초고속 자기부상 열차의 차체 경량화 설계 연구)

  • Kang, SeungGu;Shin, KwangBok;Park, KeeJun;Lee, EunKyu;Yoon, IllRo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1093-1100
    • /
    • 2014
  • The purpose of this paper is to suggest a weight-reduction design method for the hybrid carbody of a high-speed maglev train that uses aluminum extrusion profiles and sandwich composites. A sandwich composite was used on the roof as a secondary member to minimize the weight. In order to assemble the sandwich composite roof and aluminum extrusion side frame of the carbody using welding, a guide aluminum frame located at the four sides of the sandwich composite roof was introduced in this study. The clamping force of this guide aluminum frame was verified by three-point bending test. The structural integrity and crashworthiness of the hybrid carbody of a high-speed maglev train were evaluated and verified according to the Korean Railway Safety Law using a commercial finite element analysis program. The results showed that the hybrid carbody composed of aluminum extrusion frames and a sandwich composite roof was lighter in weight than a carbody made only of aluminum extrusion profiles and had better structural performance.

Effects on extrusion ratio and temperature of shore fiber reinforcd metal matrix composites by rheo-compocating (반용융 가공법에 의한 단섬유 보강 급속복합재료의 강도에 미치는 압출비와 압출온도의 영향)

  • 윤한기;김석호;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.18-27
    • /
    • 1997
  • Al 6061 alloy reinforced with 10 vol.% ${\delta}-Al_2O_3$ short fiber was fabricated by Rheo-compocasting and squwwze cating. Extrusion processings were performed at temperatures from 40$0^{\circ}C$ to 55$0^{\circ}C$ with various extrusion ratio for curved shape dies. In proportion to the increase of extrusion ratios and temperatures, ultimate tensile strength for extruded materials improved. SEM observation of fractured surfsce was capcble oof accounting for fracture mechanism and bounding state of fiber and matrix.

  • PDF