• Title/Summary/Keyword: Composite concrete slab

Search Result 391, Processing Time 0.029 seconds

A Shear Bond Chracteristics of Composite Slab with Closed-Shape Deckplate (폐쇄형 데크플레이트를 사용한 합성슬래브의 전단부착 특성에 관한 연구)

  • Ju, Gi Su;Park, Sung Moo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.557-566
    • /
    • 2001
  • Composite slab with deckplate needs sufficient bond strength between deckplate and concrete to conduct composite behavior Composite slab can transfer the shear by either chemical adhesion interface interlock, or active friction. There are several way of mechanical shear connection in composite slab. that is embossments shear connector shape of deckplate etc. Effect of mechanical interaction is deped on shape of deckplate which is to prevent peeling between deckplate and concrete and an amount of shear connector. The behavior and strength of the connection between the decking and the concrete slab due to embossments and end anchorage may be estimated using the push-off tests described in this paper We proposed the equation of shear bond strength in the composite slab It will be use to design by basic data in composite slab.

  • PDF

Cracking Control of Concrete Deck in Steel-Concrete Composite Bridges (강합성 교량의 바닥판 콘크리트 균열관리)

  • 박해균;이명섭;안병제;곽효경;서영재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.355-362
    • /
    • 2001
  • This study deals with cracking control of concrete deck in steel-concrete composite bridges according to the concrete slab casting sequences. In correlation studies between casting sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model. Finally, the methods of cracking control in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slab.

  • PDF

Advanced Composite Material Slabs for Tall Buildings (고층 건물 경량화를 위한 첨단 복합재료 상판)

  • 김덕현;심도식;김성환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.126-133
    • /
    • 1997
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. For each panel, the deflection under the dead and live loads is compared, since both tensile and compressive strengths of the composites are far more higher than those of concrete. All types of sandwich panels considered, except one case, have weights less than one tenth of that of reinforced concrete slab, with deflections less than that of the concrete slab. The cost analysis result and manufacturing methods will be reported later.

  • PDF

Experimental investigation of longitudinal shear behavior for composite floor slab

  • Kataoka, Marcela N.;Friedrich, Juliana T.;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.351-362
    • /
    • 2017
  • This paper presents an experimental study on the behavior of composite floor slab comprised by a new steel sheet and concrete slab. The strength of composite slabs depends mainly on the strength of the connection between the steel sheet and concrete, which is denoted by longitudinal shear strength. The composite slabs have three main failures modes, failure by bending, vertical shear failure and longitudinal shear failure. These modes are based on the load versus deflection curves that are obtained in bending tests. The longitudinal shear failure is brittle due to the mechanical connection was not capable of transferring the shear force until the failure by bending occurs. The vertical shear failure is observed in slabs with short span, large heights and high concentrated loads subjected near the supports. In order to analyze the behavior of the composite slab with a new steel sheet, six bending tests were undertaken aiming to provide information on their longitudinal shear strength, and to assess the failure mechanisms of the proposed connections. Two groups of slabs were tested, one with 3000 mm in length and other with 1500 mm in length. The tested composite slabs showed satisfactory composite behavior and longitudinal shear resistance, as good as well, the analysis confirmed that the developed sheet is suitable for use in composite structures without damage to the global behavior.

Non-uniform shrinkage in simply-supported composite steel-concrete slabs

  • Al-Deen, Safat;Ranzi, Gianluca;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.375-394
    • /
    • 2015
  • This paper presents the results of four long-term experiments carried out to investigate the time-dependent behaviour of composite floor slabs with particular attention devoted to the development of non-uniform shrinkage through the slab thickness. This is produced by the presence of the steel deck which prevents moisture egress to occur from the underside of the slab. To observe the influence of different drying conditions on the development of shrinkage, the four 3.3 m long specimens consisted of two composite slabs cast on Stramit Condeck $HP^{(R)}$ steel deck and two reinforced concrete slabs, with the latter ones having both faces exposed for drying. During the long-term tests, the samples were maintained in a simply-supported configuration subjected to their own self-weight, creep and shrinkage for four months. Separate concrete samples were prepared and used to measure the development of shrinkage through the slab thickness over time for different drying conditions. A theoretical model was used to predict the time-dependent behaviour of the composite and reinforced concrete slabs. This approach was able to account for the occurrence of non-uniform shrinkage and comparisons between numerical results and experimental measurements showed good agreement. This work highlights the importance of considering the shrinkage gradient in predicting shrinkage deformations of composite slabs. Further comparisons with experimental results are required to properly validate the adequacy of the proposed approach for its use in routine design.

Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: an experimental study

  • Le, Van Phuoc Nhan;Bui, Duc Vinh;Chu, Thi Hai Vinh;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1001-1019
    • /
    • 2016
  • The connector is the most important part of a composite beam and promotes a composite action between a steel beam and concrete slab. This paper presents the experiment results for three large-scale beams with a newly puzzle shape of crestbond. The behavior of this connector in a composite beam was investigated, and the results were correlated with those obtained from push-out-test specimens. Four-point-bending load testing was carried out on steel-concrete composite beam models to consider the effects of the concrete strength, number of transverse rebars in the crestbond, and width of the concrete slab. Then, the deflection, ultimate load, and strains of the concrete, steel beam, and crestbond; the relative slip between the steel beam and the concrete slab at the end of the beams; and the failure mechanism were observed. The results showed that the general behavior of a steel-concrete composite beam using the newly puzzle shape of crestbond shear connectors was similar to that of a steel-concrete composite beam using conventional shear connectors. These newly puzzle shape of crestbond shear connectors can be used as shear connectors, and should be considered for application in composite bridges, which have a large number of steel beams.

The Reasonable Concrete-Placing Methods and Sequences of Composite Steel Bridge (강합성형 교량의 합리적인 타설방법과 순서에 관한 연구)

  • Jo, Byung-Wan;Seo, Sug-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.205-212
    • /
    • 1999
  • Recently, unexpected cracks in the concrete deck slab of composite steel bridges have been widely reported at an early age of concrete placing due to the concrete placing sequence and methods. Accordingly, the analytical research was carried out to verify the negative moment at an internal supports due to the several concrete pouring sequence and to determine the reasonable concrete placing method on the deck slab of composite steel bridge. The results show that the conventional concrete-placing method, which pours concrete first on the positive moment regions and then negative regions, leads to the minimum moment at an internal supports. However, the conventional method produces two impractical construction joints on every spans and makes field engineer to pour concrete continuously. In conclusion, this concrete-placing method was verified to be reasonable only when the construction joint was placed at the $\frac{5}{8}l{\sim}\frac{6}{8}l$ location of the middle span.

  • PDF

Shear-lag effect in twin-girder composite decks

  • Dezi, Luigino;Gara, Fabrizio;Leoni, Graziano
    • Steel and Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.111-122
    • /
    • 2003
  • The paper presents a model for analysing the shear-lag effect on the slab of twin-girder composite decks subjected to static actions, support settlements and concrete shrinkage, which are the main actions of interest in composite bridge design. The proposed model includes concrete creep behaviour and shear connection flexibility. The shear-lag in the slab is accounted for by means of a new warping function. The considered actions are then applied to a realistic bridge deck and their effects are discussed. The proposed method is utilised to determine the slab effective widths for three different width-length ratios of the deck. Finally, a comparison between the results obtained with the Eurocode EC4-2 and those obtained with the proposed model is performed.

A Study of the Advanced Composite Material Slab for Light Weight of Tall Building (초고층빌딩 경량화를 위한 복합신소재 슬래브에 관한 연구)

  • Han, Bong-Koo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. For each panel, the deflection under the dead and live loads is compared, since both tensile and compressive strengths of the composites are far more higher than those of concrete. All types of sandwich panels considered, except one case, have self-weights less than one tenth of that of the reinforced concrete slab, with deflections less than that of the reinforced concrete slab.

A Efficient Vibration Analysis Method for the Cooncrete-Steel Deck Slab (콘크리트와 강제데크의 합성 바닥판의 실용적인 진동해석 방법)

  • Kim, Gee-Cheol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.91-100
    • /
    • 2005
  • Composite slab structures consisted with steel deck plate and concrete material show generally anisotropic structural behavior because of different stiffness between the major direction and sub-direction of deck plate, and also the structures can be regarded as the laminated slab structures. It is necessary for the composite deck slab structures to carry out the exact vibration analysis to evaluate the serviceability. Also, it is needed to evaluate the exact structural behavior of composite deck slab with a layered orthotropic materials. In this paper, the thickness of topping concrete and deck plate are used to calculate the material coefficient stiffness of a sub-direction, and an equivalent depth calculated from sectional stiffness of concrete and deck plate is applied to get the stiffness of a major direction. The stiffness of two layered composite plates with different depth is determined by laminated theory. It is concluded that the presented method can efficiently analyze the structural behavior of composite deck slab consisted with steel deck plate and concrete material in the practical engineering field.

  • PDF