• 제목/요약/키워드: Composite concrete slab

검색결과 396건 처리시간 0.032초

Experimental investigation on the seismic behavior of reinforced concrete column-steel beam subassemblies

  • Xiong, Liquan;Men, Jinjie;Ren, Ruyue;Lei, Mengke
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.471-482
    • /
    • 2018
  • The composite reinforced concrete and steel (RCS) structural systems have larger structural lateral stiffness, higher inherent structural damping, and faster construction speed than either traditional reinforcement concrete or steel structures. In this paper, four RCS subassemblies with or without the RC slab designed following a strong column-weak beam philosophy were constructed and tested under reversed-cyclic loading. Parameters including the width of slab and composite effect of the RC slab and beam were explored. The test results showed that all specimens performed in a ductile manner with plastic hinges formed in the beam ends near the column faces. The seismic responses of composite connections are influenced significantly by different width of slabs. Compared with that of the steel beam without the RC slab, it was found that the load carrying capacity of composite connections with the RC slab increased by 30% on average, and strength degradation, energy dissipation also had better performance, while the ductility of that were almost the same. Furthermore, the contribution of connection deformation to the overall specimen displacement was analyzed and compared. It decreased approximately 10% due to the coupling effect in the columns and beams with the RC slab. Based on the test result, some suggestions are presented for the design of composite RCS joints.

반복하중을 받는 원자력 구조물 합성 바닥판의 구조적 거동 (Structural Behavior of Composite Slab toNuclear Power Structure under Reversed Cyclic Loads)

  • 김정혁;김강식;김우범;정하선;이광수;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.629-634
    • /
    • 2000
  • Comparing with single structure constructed with reinforced concrete or steel, composite structures have a great advantage. However, in case of nuclear power structure, the application of a conventional single structure (reinforced concrete or steel structure) inflicts a heavy loss on a economical and constructive efficiency. But, the application of composite slab to nuclear power structure could compensate these deficiency. Therefore, in this study, the structural behavior of composite slab in nuclear power structure is observed to assure economical and constructive efficiency.

  • PDF

Different strengthening designs and material properties on bending behavior of externally reinforced concrete slab

  • Najafi, Saeed;Borzoo, Shahin
    • Structural Monitoring and Maintenance
    • /
    • 제9권3호
    • /
    • pp.271-287
    • /
    • 2022
  • This study investigates the bending behavior of a composite concrete slab roof with different methods of externally strengthing using steel plates and carbon fiber reinforced polymer (CFRP) strips. First, the concrete slab model which was reinforced with CFRP strips on the bottom surface of it is validated using experimental data, and then, using numerical modeling, 7 different models of square-shaped composite slab roofs are developed in ABAQUS software using the finite element modeling. Developed models include steel rebar reinforced concrete slab with variable thickness of CFRP and steel plates. Considering the control sample which has no external reinforcement, a set of 8 different reinforcement states has been investigated. Each of these 8 states is examined with 6 different uncertainties in terms of the properties of the materials in the construction of concrete slabs, which make 48 numerical models. In all models loading process is continued until complete failure occurs. The results from numerical investigations showed using the steel plates as an executive method for strengthening, the bending capacity of reinforced concrete slabs is increased in the ultimate bearing capacity of the slab by about 1.69 to 2.48 times. Also using CFRP strips, the increases in ultimate bearing capacity of the slab were about 1.61 to 2.36 times in different models with different material uncertainties.

Investigation on structural behaviour of composite cold-formed steel and reinforced concrete flooring systems

  • Omar A., Shamayleh;Harry, Far
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.895-905
    • /
    • 2022
  • Composite flooring systems consisting of cold-formed steel joists and reinforced concrete slabs offer an efficient, lightweight solution. However, utilisation of composite action to achieve enhanced strength and economical design has been limited. In this study, finite element modelling was utilised to create a three-dimensional model which was then validated against experimental results for a composite flooring system consisting of cold-formed steel joists, reinforced concrete slab and steel bolt shear connectors. This validated numerical model was then utilised to perform parametric studies on the performance of the structural system. The results from the parametric study demonstrate that increased thickness of the concrete slab and increased thickness of the cold formed steel beam resulted in higher moment capacity and stiffness of the composite flooring system. In addition, reducing the spacing of bolts and spacing of the cold formed steel beams both resulted in enhanced load capacity of the composite system. Increasing the concrete grade was also found to increase the moment capacity of the composite flooring system. Overall, the results show that an efficient, lightweight composite flooring system can be achieved and optimised by selecting suitable concrete slab thickness, cold formed beam thickness, bolt spacing, cold formed beam spacing and concrete grade.

SHCC 및 고장력 철근 복합 콘크리트 슬래브의 성능실험 (Performance Experiments of SHCC and High Tensile Reinforced Composite Concrete Slabs)

  • 문형주;조창근
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.43-50
    • /
    • 2017
  • A type of one-way concrete composite slabs made by strain hardening cementitious composites (SHCC) deck combined with high tensile reinforcements was developed and evaluated by four-point slab bending test. The SHCC material was considered to have an high-ductile and strain hardening behavior in tension after cracking. From experimental comparisons with conventional reinforced concrete slab, the proposed SHCC and high tensile reinforced concrete composite slab showed more improved responses both in service and ultimate load capacities as well as in control of crack width and deflection.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

Experimental research on sagging bending resistance of steel sheeting-styrofoam-concrete composite sandwich slabs

  • Cao, P.Z.;Lu, Y.F.;Wu, Kai
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.425-438
    • /
    • 2013
  • A new-styrofoam-concrete composite sandwich slab with function of heat insulation is designed. Four full-scale simply supported composite sandwich slabs with different shear connectors are tested. Parameters under study are the thickness of the concrete, the height of profiled steel sheeting, the influence of shear connectors including the steel bars and self-drilling screws. Experimental results showing that four specimens mainly failed in bending failure mode; the shear connectors can limit the longitudinal slippery between the steel profiled sheeting and the concrete effectively and thus guarantee the good composite action and cooperative behavior of two materials. The ultimate sagging bending resistance can be determined based on plastic theory. This new composite sandwich slab has high sagging bending resistance and good ductility. Additionally, these test results help the design and application of this new type of composite sandwich slab.

New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling

  • Tahar, Hassaine Daouadji;Tayeb, Bensatallah;Abderezak, Rabahi;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.319-332
    • /
    • 2021
  • The wood-concrete composite is an interesting solution in the field of Civil Engineering to create high performance bending elements for bridges, as well as in the building construction for the design of wood concrete floor systems. The authors of this paper has been working for the past few years on the development of the bonding process as applied to wood-concrete composite structures. Contrary to conventional joining connectors, this assembling technique does ensure an almost perfect connection between wood and concrete. This paper presents a careful theoretical investigation into interfacial stresses at the level of the two interfaces in composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate under a uniformly distributed load. The model is based on equilibrium and deformations compatibility requirements in all parts of the strengthened composite beam, i.e., the wooden beam, RC slab, the CFRP plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the CFRP- wooden-concrete hybrid structures.

박스형 철골빔이 적용된 프리스트레스 할로우-코어 합성슬래브의 해석연구 (An Analytic Study of Composite Hollow Core Slab Subjected with Box Type Beams)

  • 홍성걸;서도원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.311-314
    • /
    • 2005
  • This research aims to analyze of prestressed composite hollow-core slab and box type steel beam. The smeared crack model used in abaqus for the modeling of hollow core reinforced concrete, including cracking of the concrete, rebar and concrete interaction using the tension stiffening concept, and rebar yield. The structure modeled is a simply supported hollow core spancrete slab subjected spa-h beams and prestressed in one direction. The hollow core spancrete slab is subjected to four-point bending. The concrete-rebar interaction that occur as the concrete begins to crack are of major importance in determining the spancrete slab's response between its initial, deformation and its collapse. This smeared crack model used in analysis involved non-liner concrete analysis concept.

  • PDF

Design of top concrete slabs of composite space trusses

  • El-Sheikh, Ahmed
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.319-330
    • /
    • 1999
  • The design of composite space trusses is a demanding task that involves taking several decisions on the truss depth, number of panels, member configuration, number of chord layers and concrete slab thickness and grade. The focus in this paper is on the design of top concrete slabs of composite space trusses, and in particular their thickness. Several effects must be considered in the process of designing the slab before an optimum thickness can be chosen. These effects include the inplane forces arising from shear interaction with the steel sub-truss and the flexural. and sheer effects of direct lateral slab loading. They also include a constructional consideration that the thickness must allow for sufficient cover and adequate space for placing the reinforcement. The work presented in this paper shows that the structural requirements on the concrete slab thickness are in many cases insignificant compared with the constructional requirements.