• Title/Summary/Keyword: Composite catalysis

Search Result 35, Processing Time 0.018 seconds

Preparation of Cu-Al$_2$O$_3$ Composite Powder in the Aqueous Solution by Ha Gas Reduction (수소환원법에 의한 수용액 중 Cu-Al$_2$O$_3$ 복합분말제조)

  • 이종현
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.106-112
    • /
    • 1997
  • $Cu-Al_20_3 $ composite powders were prepared by hydrogen reduction of $Cu^{2+}$ from ammoniacal copper sulfate solution on alumina core using autoclave. The copper reduction rate and the properties of copper layer were investigated using Scanning Electron Microscope(SEM), X-ray diffractometer, size and chemical analyzers. The reduction rate of $Cu^{2+}$ showed the maximum value when the molar ratio of [$NH_3$]/[$Cu^{2+}$] was 2. In order to prevent the agglomeration of Cu powder and ethane reduction rate, $Fe^{2+}$ and anthraquinone which act as catalysis were added in the solution. Catalysis was effectively chanced with the addition of two elemerts at a time. Optimum conditions obtained in this study were hydrogen reduction temperature of 205$^{\cire}C$, stirring speed of 500 rpm and hydrogen partial pressure of 300 psi. Obtained $Cu-Al_20_3 $ composite Powders were found to have the uniform and continuous copper coating layer of nodule shape with 3~5 $\mu$m thickness.

  • PDF

Construction of Strontium Titanate/Binary Metal Sulfide Heterojunction Photocatalysts for Enhanced Visible-Light-Driven Photocatalytic Activity

  • Yu, Yongwei;Yang, Qing;Ma, Jiangquan;Sun, Wenliang;Yin, Chong;Li, Xiazhang;Guo, Jun;Jiang, Qingyan;Lu, Zhiyuan
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850130.1-1850130.12
    • /
    • 2018
  • A novel strontium titanate/binary metal sulfide ($SrTiO_3/SnCoS_4$) heterostructure was synthesized by a simple two-step hydrothermal method. The visible-light-driven photocatalytic performance of $SrTiO_3/SnCoS_4$ composites was evaluated in the degradation of methyl orange (MO) under visible light irradiation. The photocatalytic performance of $SrTiO_3/SnCoS_4-5%$ is much higher than that of pure $SrTiO_3$, $SnCoS_4$, $SrTiO_3/SnS_2$ and $SrTiO_3/CoS_2$. The $SrTiO_3/SnCoS_4$ composite material with 5 wt.% of $SnCoS_4$ showed the highest photocatalytic efficiency for MO degradation, and the degradation rate could reach 95% after 140 min irradiation time. The enhanced photocatalytic activity was ascribed to not only the improvement of visible light absorption efficiency, but also the construction of a heterostructure which make it possible to effectively separate photoexcited electrons and holes in the two-phase interface.

A Study on Composite Electroless Nikel Plating with Ceramic Dispersive (비금속 분체를 이용한 무전해 니켈 복합도금에 관한 연구)

  • 김용규;박수훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.43-51
    • /
    • 1989
  • The characteristion of composite electroless Nikel palting on the condition of adding 3kinds ceramic dispersives, Al2O3, Si3O4 and artificial diamond powder were studied. Decreasing solution temperature for composite plating was required to depress the spontaneous decomposition caused by dispersive including enlargement of reaction surface. The rate of composite plating was faster than that of general electroless-Nickel plating without dispersive. this increasing tendency of plating rate was remarkable for the active catalysis, like diamond powder.

  • PDF

Preparation of a Composite of Sulfated Zirconia/Metal Organic Framework and its Application in Esterification Reaction

  • Park, Eun Young;Hasan, Zubair;Ahmed, Imteaz;Jhung, Sung Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1659-1664
    • /
    • 2014
  • A porous metal-organic framework (MOF), MIL-101, was synthesized in the presence of sulfated zirconia (SZ) to produce acidic SZ/MIL-101 composites for the first time. The composites were characterized with XRD, nitrogen adsorption, FT-IR, scanning electron microscope, chemical analysis and so on. The composites (SZ/MIL-101s) were successfully applied in a liquid-phase esterification for a high yield of ester. This catalytic result of SZ/MIL-101, compared with that of pure SZ or MIL-101 (showing a negligible yield of ester), suggests that the SZ in the composite is highly active in the acid catalysis probably because of the well-dispersed active species of SZ. Moreover, the esterification is catalyzed in heterogeneous mode as confirmed by negligible esterification after filtration of the catalyst. Finally, microwaves can be efficiently applied both in the synthesis of the composites and the esterification reaction to accelerate the two processes of synthesis and esterification by about 5 times.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Application and Technology on Development of High Temperature Structure SiCf/SiC Composite Materials (고온용 SiCf/SiC 복합재료개발 기술과 활용방향)

  • Yoon, Han-Ki;Lee, Young-Ju;Park, Yi-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1016-1021
    • /
    • 2008
  • The development of the first wall whose major function is to withstand high neutron and heat fluxes is a critical path to fusion power. The materials database and the fabrication technology are being developed for design, construction and safety operation of the fusion reactor. The first wall was designed to consist of the plasma facing armor, the heat sink layer and the supporting plates. and Porous materials are of significant interest due to their wide applications in catalysis, separation, lightweight structural materials. In this study, the characteristics of the sintering process of SiC ceramic, $SiC_f$/SiC composite and porous $C_f$/SiC composite have been introduced order to study of the fusion blanket materials and heat-exchange pannel.

Reinforcement of Polyethylene Pipes with Modified Carbon Microfibers

  • Petukhova, E.S.;Savvinova, M.E.;Krasnikova, I.V.;Mishakov, I.V.;Okhlopkova, A.A.;Jeong, Dae-Yong;Cho, Jin-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.177-180
    • /
    • 2016
  • The surface properties of carbon microfibers (CMFs) are modified by chemical deposition of carbon nanofibers via the so-called ethylene processing. CMFs and the modified CMFs (MCMFs) are investigated as reinforcement additives to fabricate polyethylene (PE) composites with enhanced mechanical characteristics. The mechanical properties of the PE-MCMF composites are found to be better and favorable for applications under harsh climatic conditions such as those in Siberia. Improved adhesive interaction between MCMFs and PE is responsible for these enhanced mechanical properties.

The Effects of Second Phases on the Photocatalytic Characteristics of the TiO2 base Nano Composite (TiO2계 나노 복합촉매 특성에 미치는 생성상의 영향)

  • 안인섭;고봉석;배승열
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.143-148
    • /
    • 2004
  • In the present study, $TiO_2$ imbedded composite powders have been successfully prepared from the (Cu. Zn)/$TiO_2$ composite salt solution. The composite (Cu, Zn)/$TiO_2$ powders were formed by drying the solution at 200~$600^{\circ}C$ in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting the decomposition ratio of aniline blue with UV-visible spectrophotometer(Shimazu Co., UV-1601). Phase analysis of (Cu, Zn)/$TiO_2$ composite powders was carried out by XRD and DSC, and powder size was measured with TEM. The mean particle size of composite powders was about 100mm. As the reduction temperature increases, a few zinc sulfide and oxide phases was formed and copper oxide phase was reduced. The decomposition ratio of aniline blue was about 80% under the UV irradiation by the TiO$_2$ phase in the composite (Cu, Zn)/$TiO_2$ powders and similar decomposition ratio of 80% was obtained at the UV lightless condition by virtue of Cu and Zn compounds.

Phase Transformation Properties of Cu/TiO2 Photocatalyst Powders Fabricated by Mechanical Alloying (기계적 합금화법으로 제조된 Cu/TiO2 촉매용 분말의 상변화 특성)

  • 안인섭;배승열;이영란;고봉석
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.110-115
    • /
    • 2002
  • In order to obtain the nano size $10wt%Cu-TiO_2$composite powders by mechanical alloying method for useful composite catalysis, the effects of mechanical alloying time on the formationof $10wt%Cu-TiO_2$ composite powders were analyzed. The phase transformation behaviors were experimented as the heat treating temperature increased. Homogeneous 10wt% Cu-rutile type $TiO_2$composite powders were synthesized in 40 hours by mechanical alloying. After 60 hours mechanical alloying 50 nm size $TiO_2$powders were obtained. Both the phase of mechanically alloyed 10 wt% $Cu-TiO_2$ and pure $TiO_2$ powders were not transformed to anatase after annealing at the temperature range between 350 to 500 $^{\circ}C$. The intermetallic compound of $Cu_2Ti_4$O was formed after 10 hours mechanical alloying, however it could be considered that this intemetallic phase dose not prevent the transformation of rutile $TiO_2$ to the anatase phase after heat treatment at the temperature between 350 and $550^{\circ}C$.