• Title/Summary/Keyword: Composite bogie frame

Search Result 14, Processing Time 0.019 seconds

A Study on Optimum Design Analysis of Bolt Locations for Metal Joint Parts of Railway Composite Bogie Frames using Sub-modeling Method (서브모델링 기법을 이용한 철도차량 복합재 대차프레임의 금속재 체결부 볼트 위치 최적화 해석 연구)

  • Kim, Jun-Hwan;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Jung-Seok
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.19-25
    • /
    • 2010
  • This paper describes the optimum design of bolt locations for metal joint parts of railway bogie frame made of glass fiber/epoxy 4-harness satin woven laminate composite and PVC foam core. The optimum design analysis was done by sub-problem approximation method using Ansys Parameter Design Language(APDL). The sub-modeling method was introduced to conduct the detailed recalculation for the only target parts and reduce calculating time. The structural analysis for composite bogie frame was performed according to JIS E 4207. The results showed that the optimum design analysis using sub-modeling method was able to obtain faster and more precise results than that of the entire model by the control of mesh size for the target parts, and the maximum Von-Mises stress has been reduced in comparison with its original dimensions due to the optimum design of bolt locations.

Evaluation of Impact Damage and Residual Compression Strength after Impact of Glass/Epoxy Laminate Composites for Lightweight Bogie Frame induced by Ballast-Flying Phenomena (도상자갈 비산에 의한 경량 대차프레임 적용 유리/에폭시 적층 복합재의 충격손상 및 충격 후 잔류압축강도 평가)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Kim, Jung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2012
  • In order to evaluate the effect of structural degradation of a GFRP composite bogie frame due to ballast-flying phenomena, the impact test and residual compression test after impact was conducted for glass fiber/epoxy 4-harness satin woven laminate composites applied to skin part of a bogie frame. The impact test was performed using a instrumented impact testing system with energy levels of 5J, 10J, and 20J, and the impactor was designed to have various ballast shapes such as sphere, cube, and cone to consider the ballasted track environments. The residual compression strength was tested to evaluate the degradation of mechanical properties of impact-damaged laminate composites. The results showed that the damage area and the degradation of residual compressive strength after impact for laminate composites was increased with increase of impact energy for all ballast shapes, and was particularly most influenced by ballast shape of cone.

A Study on the Evaluation of Tension-Compression Fatigue Characteristics of Glass Fiber/Epoxy 4-Harness Satin Woven Laminate Composite for the Railway Bogie Application (철도차량 대차 적용 유리섬유/에폭시 4-매 주자직 적층 복합재의 인장-압축 피로특성 평가 연구)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Kim, Jung-Seok
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.22-29
    • /
    • 2010
  • This paper describes the evaluations of tension-compression fatigue characteristics and life for glass fiber/epoxy laminate composite applied to railway bogie to reduce weight. Test samples of tension-compression fatigue were composed of glass fiber/epoxy 4-harness woven laminate composites with different stacking sequence of warp-direction, fill-direction and ${\pm}45^{\circ}$-direction. The tension-compression fatigue test was conducted with stress ratio (R) of -1 and frequency of 5Hz. Goodman diagram were used to evaluate the fatigue characteristics and life of glass fiber/epoxy 4-harness satin woven laminate composite. Anti-buckling jig was designed to prevent buckling of specimen under compression load. The test results showed that the fatigue characteristics of glass fiber/epoxy 4-harness satin woven laminate composite with stacking sequence of warp-direction had a good performance in comparison with that of SM490 used to conventional metal railway bogie.

Dynamic Property Evaluation of Four-Harness Satin Woven Glass/epoxy Composites for a Composite Bogie Frame (복합소재 대차프레임용 4매 주자직 유리섬유/에폭시 복합소재의 진동특성평가)

  • Kim, Il Kyeom;Kim, Jung Seok;Seo, Sung Il;Lee, Woo Geun
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, the natural frequency and damping ratio of a four-harness satin woven glass/epoxy composite material are evaluated by means of modal tests and a finite element analysis. To achieve this goal, glass/epoxy beam specimens with different lengths and thicknesses were manufactured via autoclave curing. In the test, the maximum damping ratio was found to occur at the lowest test frequency. As the test frequency increased, the damping ratio decreased exponentially to a critical value. After that value, the damping ratio increased gradually to the maximum test frequency.