• 제목/요약/키워드: Composite blades

검색결과 129건 처리시간 0.021초

로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석 (Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility)

  • 김동만;김동현;김요한;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

풍력발전기 로터 블레이드의 등가 구조모델 수립 (Equivalent Structural Modeling of Wind Turbine Rotor Blade)

  • 박영근;황재혁;김석우;장문석;배재성
    • 한국항공운항학회지
    • /
    • 제14권4호
    • /
    • pp.11-16
    • /
    • 2006
  • The wind turbine rotor blade is faced with various aeroelastic problem as rotor blades become bigger and lighter by the use the composite material. The aeroelastic analysis of a wind turbine rotor blade requires its aerodynamic model and structural model. For effective aeroelastic analysis, it is required the simple and effective structural model of the blade. In the present study, we introduce the effective equivalent structural modeling of the blade for aeroelastic analysis. The equivalent beam model of the composite blade based on its 3D finite element model is established. The free vibration analysis shows that the equivalent beam model of the blade is equivalent to its 3D finite element model.

  • PDF

Study on the Performance of Infrared Thermal Imaging Light Source for Detection of Impact Defects in CFRP Composite Sandwich Panels

  • Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn;Park, Jeong-Hak;Choi, Won-Jae;Jung, Hyun-Chul
    • 비파괴검사학회지
    • /
    • 제37권2호
    • /
    • pp.91-98
    • /
    • 2017
  • Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

타설 노즐의 내부 블레이드에 의한 섬유 방향성 제어 성능에 관한 수치 해석적 연구 (Numerical Studies on the Control Performance of Fiber Orientation for Nozzle with Inside Blades)

  • 이종한
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.157-163
    • /
    • 2018
  • 본 연구는 기존에 사용되어 지고 있는 타설 노즐 내부에 블레이드를 설치함으로써 타설 시 시멘트 복합체에 혼입된 섬유의 방향성을 제어하고 동시에 분포도를 향상시키고자 하였다. 블레이드 변수 최적화를 위하여 시멘트계 매트릭스 재료의 유동과 혼입된 섬유의 운동, 노즐간의 상호작용을 고려한 다중물리계 유한요소해석을 수행하였다. 사용되는 섬유길이를 변수로 하여 블레이드의 간격, 길이, 위치를 결정하였다. 내부 블레이드 간격이 섬유길이의 약 1.2~2.4배, 블레이드 길이는 섬유길이의 약 4~8배, 설치 위치는 시멘트 복합체가 도출되는 입구에서부터 섬유길이의 14배 이하일 때 섬유 방향각이 약 $15^{\circ}$이하로 제어되었다. 또한, 본 연구에서 제시된 블레이드형 노즐은 기존의 섬유보강 시멘트 복합체 타설장비와 타설관을 그대로 사용하면서, 탈 부착식으로 제작될 수 있어 사용성과 편의성을 동시에 제공할 수 있을 것으로 판단된다.

Application of self-healing technique to fibre reinforced polymer wind turbine blade

  • Fifo, Omosola;Ryan, Kevin;Basu, Biswajit
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.593-606
    • /
    • 2015
  • This paper presents a novel concept of healing some of the damages in wind turbine blades (WTBs) such as cracks and delamination. This is achieved through an inherent functioning autonomous repairing system. Such wind turbine blades have the benefit of reduced maintenance cost and increased operational period. Previous techniques of developing autonomous healing systems uses hollow glass fibres (HGFs) to deliver repairing fluids to damaged sites. HGFs have been reported with some limitations like, failure to fracture, which undermines their further usage. The self-healing technique described in this paper represents an advancement in the engineering of the delivery mechanism of a self-healing system. It is analogous to the HGF system but without the HGFs, which are replaced by multiple hollow channels created within the composite, inherently in the FRP matrix at fabrication. An in-house fabricated NACA 4412 WTB incorporating this array of network hollow channels was damaged in flexure and then autonomously repaired using the vascular channels. The blade was re-tested under flexure to ascertain the efficiency of the recovered mechanical properties.

Strain Transmission Characteristics of Packaged Fiber Bragg Grating Sensors for Structural Health Monitoring

  • Cho, Sung-In;Yoo, Seung-Jae;Kim, Eun-Ho;Lee, In;Kwon, Il-Bum;Yoon, Dong-Jin
    • 비파괴검사학회지
    • /
    • 제30권3호
    • /
    • pp.236-243
    • /
    • 2010
  • Fiber Bragg grating(FBG) sensor arrays can be used to monitor the mechanical behavior of the large composite structures such as wind turbine rotor blades and aircrafts. However, brittle FBG sensors, especially multiplexed FBG sensors are easily damaged when they are installed in the flexible structures. As a protection of brittle FBG sensors, epoxy packaged FBG sensors have been presented in this paper. Finite element analysis and experiments were performed to evaluate the effects of adhesives, packaging materials and the bonding layer thickness on the strain transmission. Two types of epoxy were used for packaging FBG sensors and the sensor probes were attached with various bonding layer thickness. It was observed that thin bonding layer with high elastic modulus ratio of the adhesive to packaging provided good strain transmission. However, the strain transmission was significantly decreased when elastic modulus of the adhesive was much lower than the packaged FBG sensor probe's one.

테라헤르츠파를 이용한 풍력터빈 블레이드 NDE 탐상 평가기법 (NDE Inspecting Techniques for Wind Turbine Blades Using Terahertz Waves)

  • 임광희;김선규;정종안;조영태;우용득
    • 공학기술논문지
    • /
    • 제11권4호
    • /
    • pp.245-251
    • /
    • 2018
  • Terahertz waves (T-ray) was extensively studied for the NDE (nondestructive evaluation) of characterization of trailing edges for a use of turbines composed with composite materials. The used NDE system were consisted of both CW(Continuous wave) and TDS (Time domain spectroscopy). The FRP composites were utilized for two kinds of both trailing edges of wind energy (non-conducting polymeric composites) and carbon fiber composites with conducting properties. The signals of T-ray in the TDS (Time domain spectroscopy) mode resembles almost that of ultrasound waves; however, a terahertz pulse could not penetrate a material with conductivity unlike ultrasound. Also, a method was suggested to obtain the "n" in the materials, which is called the refractive index (n). The data of refractive index (n) could be solved for the trailing edges. The trailing edges were scanned for characterization and inspection. C-scan and B-scan images were obtained and best optimal NDE techniques were suggested for complicated geometry samples by terahertz radiation. Especially, it is found that the defect image of T-ray corresponded with defect locations for the trailing edges of wind mill.

고성능 형상 및 유리섬유/에폭시-우레탄 샌드위치 구조를 사용한 소형 풍력발전 블레이드의 공력 및 구조설계 (Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure)

  • Chang-Duk Kong;Jo-Hyug Bang
    • 한국추진공학회지
    • /
    • 제8권1호
    • /
    • pp.70-80
    • /
    • 2004
  • 본 연구에서는 한국과 같이 비교적 저 풍속인 지역에 적용 가능하도록 피치제어장치를 가진 1kW급 소형 풍력발전 시스템의 개발 결과를 제시하였다. 공력설계에서는 블레이드의 직경이 동급의 상용 블레이드 보다 과도하게 크지 않으면서도 저 풍속 지역에서 보다 효율적인 형상설계를 위해 여러 가지 설계 변수분석을 통한 파라미터 연구가 수행되었다. 또한 구조설계를 통해 풍력발전기에 작용하는 다양한 하중을 효과적으로 견딜 수 있는 경량의 복합재 구조가 설계되었다. 구조설계의 평가를 위해 유한요소 구조해석이 수행되었으며, 실물 구조시험을 수행하여 구조적 안전성을 확인하였다.

피로수명을 고려한 1 MW급 수평축 풍력터빈 복합재 블레이드 설계에 관한 연구 (A Study on Composite Blades of 1 MW Class HAWT Considering Fatigue Life)

  • 김민웅;공창덕;박현범
    • 한국항공우주학회지
    • /
    • 제40권7호
    • /
    • pp.564-573
    • /
    • 2012
  • 새롭게 제안된 공력 설계 절차와 In-house 프로그램을 이용하여 1 MW급 수평축풍력 터빈 블레이드의 형상을 결정하였고, 기존에 개발된 블레이드의 실험 결과와 본 연구에서 제안한 블레이드와의 비교를 통하여 공력 설계에 대한 타당성을 제시하였다. 블레이드의 구조 설계는 Netting Rule과 Rule of Mixture를 적용하여 설계를 진행하였다. 설계된 블레이드의 구조적 안전성은 상업적 유한요소프로그램인 MSC.NASTRAN을 사용하여 다양한 하중에 따라 선형 정적해석, 변형해석, 좌굴해석, 진동모드해석 등을 수행하였다. 최종적으로 Spera가 제시한 실험식을 적용하여 요구된 피로수명에 대해 타당성을 확인하였다.

풍력발전기 블레이드 적용 CFRP 복합재료의 DIC 방법에 의한 재료특성치 평가 (Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method)

  • 강지웅;권오헌;김태경;조세진
    • 동력기계공학회지
    • /
    • 제14권5호
    • /
    • pp.17-23
    • /
    • 2010
  • In recent, the capacity of a commercial wind power has reached the range of 6 MW, with large plants being built world-wide on land and offshore. The rotor blades and the nacelle are exposed to external loads. Wind power system concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. Plain woven fabrics Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness, strength and chemical stability. However, Plain woven CFRP composite have a lot of problems, especially delamination, compared with common materials. Therefore, the aim of this work is to estimate the mechanical properties using the tensile specimen and to evaluate strain using the CNF specimen on plain woven CFRP composites. For the strain, we tried to apply to plain woven CFRP using Digital Image Correlation (DIC) method and strain gauge. DIC method can evaluate a strain change so it can predict a location of fracture.