• 제목/요약/키워드: Composite Solution

검색결과 1,664건 처리시간 0.032초

Antimicrobial Properties of Wheat Gluten-Chitosan Composite Film in Intermediate-Moisture Food Systems

  • Park, Sang-Kyu;Bae, Dong-Ho
    • Food Science and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.133-137
    • /
    • 2006
  • Wheat gluten-chitosan composite film (WGCCF) can prevent moisture migration and enhance the antimicrobial properties of gluten in intermediate-moisture foods like sandwiches. To mimic the structure of actual sandwich-type products we developed multi-layer food models, where moisture content and water activity differ. Water activity gradients direct moisture migration and therefore determine product characteristics and product stability. A 10% wheat gluten film-forming solution was mixed with chitosan film-forming solution (0-3%, w/w) and evaporated to generate WGCCF. Addition of 3% chitosan enhanced the mechanical properties of the film composite, lowered its water vapor permeability, and improved its ability to protect against both, Streptococcus faecalis and Escherichia coli, in a 24 hr sandwich test (reduction of 1.3 and 2.7 log cycles, respectively, compared to controls). Best barrier and antimicrobial performance was found for 3% chitosan WGCCF at pH 5.1. Film of this type may find application as barrier film for intermediate-moisture foods.

Water Uptake and Tensile Properties of Plasma Treated Abaca Fiber Reinforced Epoxy Composite

  • Paglicawan, Marissa A.;Basilia, Blessie A.;Kim, Byung Sun
    • Composites Research
    • /
    • 제26권3호
    • /
    • pp.165-169
    • /
    • 2013
  • This work presents the tensile properties and water uptake behavior of plasma treated abaca fibers reinforced epoxy composites. The composites were prepared by vacuum assisted resin transfer molding. The effects of treatment on tensile properties and sorption characteristics of abaca fiber composites in distilled water and salt solution at room temperature were investigated. The tensile strength of the composites increased with plasma treatment. With plasma treatment, an improvement of 92.9% was obtained in 2.5 min exposure time in plasma. This is attributed to high fiber-matrix compatibility. Less improvement on tensile properties of hybrid treatment of sodium hydroxide and plasma was obtained. However, both treatments reduced overall water uptake in distilled water and salt solution. Hydrophilicity of the fibers decreased upon plasma and sodium hydroxide treatment, which decreases water uptake.

충진제 종류에 따른 GFRP 복합체의 내알카리성 실험 (Experimental Study on Durability Performance of GFRP Composite for Alkali Solution)

  • 유영준;박영환;김형열;문창권;이승렬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.585-588
    • /
    • 2006
  • This paper presents experimental results for durability performance of GFRP composite exposed to the $80^{\circ}C$ alkali solution. A total of 280 specimens for 4 types of additive and 7 cases of immersion time were prepared and tested. Additives used in this study were PVA, kaolin clay, and alumina powder. Specimens were immerged up to 30 days and tested for tensile strength for each immersion time. The results indicate that it is important to fill the inner space of GFRP composite densely to avoid the decrease of tensile strength. In this study, PVA additive showed better performance than other additives.

  • PDF

수산 탄탈륨 용액을 이용한 초미립 TaC-5%Co 복합 분말의 합성 (Synthesis of Ultrafine TaC-5%Co Composite Powders using Tantalum Oxalate Solution)

  • 권대환;홍성현;김병기
    • 한국분말재료학회지
    • /
    • 제10권4호
    • /
    • pp.255-261
    • /
    • 2003
  • Ultrafine TaC-5%Co composite powders were synthesized by spray conversion process using tantalum oxalate solution and cobalt nitrate hexahydrate(Co($(NO_3)_2$ . 6$H_2O$). The phase of Ta-Co oxide powders had amorphous structures after calcination below 50$0^{\circ}C$ and changed $Ta_2O_5$, $TaO_2$ and $CoTa_2O_6$ phase by heating above $600^{\circ}C$. The calcined Ta-Co oxide powders were spherical agglomerates consisted of ultrafine primary particles <50 nm in size. By carbothermal reaction, the TaC phase began to form from 90$0^{\circ}C$. The complete formation of TaC could be achieved at 105$0^{\circ}C$ for 6 hours. The observed size of TaC-Co composite powders by TEM was smaller than 200 nm.

Nonlinear vibration of unsymmetrical laminated composite beam on elastic foundation

  • Pakar, I.;Bayat, M.;Cveticanin, L.
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.453-461
    • /
    • 2018
  • In this paper, nonlinear vibrations of the unsymmetrical laminated composite beam (LCB) on a nonlinear elastic foundation are studied. The governing equation of the problem is derived by using Galerkin method. Two different end conditions are considered: the simple-simple and the clamped-clamped one. The Hamiltonian Approach (HA) method is adopted and applied for solving of the equation of motion. The advantage of the suggested method is that it does not need any linearization of the problem and the obtained approximate solution has a high accuracy. The method is used for frequency calculation. The frequency of the nonlinear system is compared with the frequency of the linear system. The influence of the parameters of the foundation nonlinearity on the frequency of vibration is considered. The differential equation of vibration is solved also numerically. The analytical and numerical results are compared and is concluded that the difference is negligible. In the paper the new method for error estimation of the analytical solution in comparison to the exact one is developed. The method is based on comparison of the calculation energy and the exact energy of the system. For certain numerical data the accuracy of the approximate frequency of vibration is determined by applying of the suggested method of error estimation. Finally, it has been indicated that the proposed Hamiltonian Approach gives enough accurate result.

전도성을 가지는 하이브리드 Ti2AlN 세라믹 복합체의 마이크로 방전드릴링에서 가공성 평가 (Machinability Evaluation of Hybrid Ti2 Ceramic Composites with Conductivity in Micro Electrical Discharge Drilling Operation)

  • 허재영;정영근;강명창
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.285-290
    • /
    • 2013
  • $Ti_2AlN$ composites are a laminated compounds that posses unique combination of typical ceramic properties and typical metallic(Ti alloy) properties. In this paper, the powder synthesis, SPS sintering, composite characteristics and machinability evaluation were systematically conducted. The random orientation characteristics and good crystallization of the $Ti_2AlN$ phase are observed. The electrical and thermal conductivity of $Ti_2AlN$ is higher than that of Ti6242 alloy. A machining test was carried out to compare the effect of material properties on micro electrical discharge drilling for $Ti_2AlN$ composite and Ti6242 alloy. Also, mixture table as a kind of tables of orthogonal arrays was used to know how parameter is main effective at experimental design. Consequently, hybrid $Ti_2AlN$ ceramic composites showed good machining time and electrode wear shape under micro ED-drilling process. This conclusion proves the feasibility in the industrial applications.

Fabrication and Characterization of Carbon Nanotube/Carbon Fiber/Polycarbonate Multiscale Hybrid Composites

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • 제29권5호
    • /
    • pp.269-275
    • /
    • 2016
  • Multiscale hybrid composites, which consist of polymeric resins, microscale fibers and nanoscale reinforcements, have drawn significant attention in the field of advanced, high-performance materials. Despite their advantages, multiscale hybrid composites show challenges associated with nanomaterial dispersion, viscosity, interfacial bonding and load transfer, and orientation control. In this paper, carbon nanotube(CNT)/carbon fiber(CF)/polycarbonate(PC) multiscale hybrid composite were fabricated by a solution process to overcome the difficulties associated with controlling the melt viscosity of thermoplastic resins. The dependence of CNT loading was studied by varying the method to add CNTs, i.e., impregnation of CF with CNT/PC/solvent solution and impregnation of CNT-coated CF with PC/solvent solution. In addition, hybrid composites were fabricated through surfactant-aided CNT dispersion followed by vacuum filtration. The morphologies of the surfaces of hybrid composites, as analyzed by scanning electron microscopy, revealed the quality of PC impregnation depends on the processing method. Dynamic mechanical analysis was performed to evaluate their mechanical performance. It was analyzed that if the position of the value of tan ${\delta}$ is closer to the ideal line, the adhesion between polymer and carbon fiber is stronger. The effect of mechanical interlocking has a great influence on the dynamic mechanical properties of the composites with CNT-coated CF, which indicates that coating CF with CNTs is a suitable method to fabricate CNT/CF/PC hybrid composites.

Numerical analysis of interface crack problem in composite plates jointed with composite patch

  • Cetisli, Fatih;Kaman, Mete O.
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.203-220
    • /
    • 2014
  • Stress intensity factors are numerically investigated for interfacial edge crack between two dissimilar composite plates jointed with single side composite patch. Variation of stress intensity factor under Mode I loading condition is examined for different material models and fiber orientation angles of composite plates and patch. ANSYS 12.1 finite element analysis software is used to obtain displacements of crack surfaces in the numerical solution and repaired plates are modeled in three dimensions. Obtained results are presented in the form of graphs. It is found that fiber orientation angle of composites is an effective parameter on interfacial stress intensity factor.

소수성 CNT/PVDF 복합막에서 CNT의 분산과 전도성의 관계 (Relations Between Dispersion of CNTs and Electrical Conductivity in the Hydrophobic CNT/PVDF Composite Film)

  • 이선우
    • 한국전기전자재료학회논문지
    • /
    • 제28권7호
    • /
    • pp.462-466
    • /
    • 2015
  • In this paper, we investigated the relations between dispersion of CNTs (carbon nanotubes) and electrical conductivity in the CNT/PVDF (polyvinylidene fluoride) composite film. By adding hydrophobic CNTs as filler into the PVDF matrix, we fabricated hydrophobic and electrically conducting polymer coating film. Dispersion of CNTs in the CNT/PVDF composite film plays a significant role in terms of electrical conductivity and wetting property. Spray coating method was used to form the CNT/PVDF composite films by injecting the dispersed CNTs in the PVDF solution with different weight ratios from 0.7 wt% to 7 wt%. We investigated the electrical properties and contact angles of the CNT/PVDF composite films with the CNT concentration. Finally we discussed the conducting mechanism and feasibility of the CNT/PVDF composite film for the conducting polymer films.

Failure mechanisms of externally prestressed composite beams with partial shear connection

  • Dall'Asta, A.;Dezi, L.;Leoni, G.
    • Steel and Composite Structures
    • /
    • 제2권5호
    • /
    • pp.315-330
    • /
    • 2002
  • This paper proposes a model for analysing the non-linear behaviour of steel concrete composite beams prestressed by external slipping cables, taking into account the deformability of the interface shear connection. By assuming a suitable admissible displacement field for the composite beam, the balance condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the unknown displacement functions as series of shape functions according to the Ritz method. The model is applied to real cases by showing the consequences of different connection levels between the concrete slab and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be the cause of premature failure of the composite girder.