• 제목/요약/키워드: Composite Sensor

Search Result 535, Processing Time 0.026 seconds

Study on the Damage Diagnosis of an Cantilever Beams using PZT Actuator and PVDF Sensor (PZT 액추에이터와 PVDF센서를 이용한 외팔보의 손상 진단에 관한 연구)

  • 권대규;임숙정;유기호;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.73-82
    • /
    • 2004
  • This paper presents the study on damage diagnosis of an intelligent cantilevered beams using PZT actuator and PVDF sensor This study provides the theoretical and experimental verification to examine structural damage. Time domain analysis for the non-destructive detection of damage is presented by parameterized partial differential equations and Galerkin approximation techniques. The time histories of the vibration response of structure were used to identify the presence of damage. Furthermore, this systematic approach permits one to use the piezomaterials to both excite and sense the vibration of structures. We also carried out the experimental verification about reliability of theoretical methods fur detecting the damage of a composite beam with PZT actuator and PVDF sensor. Experimental results are presented from tests on cantilevered composite beams which is damaged at different location and different dimensions. The results were compared with the simulation results. Good agreement between the results was found for the time shifts and amplitude difference in transients response of the cantilevered beam.

Evaluation of Nondestructive Damage Sensitivity on Single-Basalt Fiber/Epoxy Composites using Micromechanical Test and Acoustic Emission with PZT and PVDF Sensors (PZT 및 PVDF 센서에 따른 음향방출과 Micromechanical 시험법을 이용한 단일 Basalt 섬유 강화 에폭시 복합재료의 비파괴 손상감지능 평가)

  • Kim, Dae-Sik;Park, Joung-Man;Jung, Jin-Kyu;Kong, Jin-Woo;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.61-67
    • /
    • 2004
  • Nondestructive damage sensitivity on single-basalt fiber/epoxy composites was evaluated by micromechanical technique and acoustic emission (AE). Piezoelectric lead-zirconate-titanate (PZT), polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer were used as AE sensor, respectively. In single-fiber composite, the damage sensing with different sensor types were compared to each other. Piezoelectric PVDF polymer sensor was embedded in and attached on the composite, whereas PZT sensor was only attached on the surface of specimen. In case of embedded polymer sensors, responding sensitivity was higher than that of the attached case. It can be due to full constraint inside specimen to transfer elastic wave coming from micro-deformation. For both the attached and the embedded cases, the sensitivity of P(VDF-TrFE) sensor was almost same as that of conventional PVDF sensor.

Development of Novel Impact Paint Sensor by Using Graphene based Smart Nano Composite (그래핀 기반 지능형 나노복합소재를 이용한 고감도 임팩트 페인트 센서 개발 연구)

  • Kim, Sung Yong;Park, Sehoon;Choi, Gyoung Rak;Park, Hyung-Ki;Kang, Inpil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2014
  • This paper presents a novel impact sensor which can be fabricated with smart paint made of grapheme. This smart nano paint can be easily installed on structures using a spray-on technique and that can make the sensor low cost and practical. The graphene effectively improves the piezoresistivity of the smart paint and that is available to achieve sensitive impact sensor with high gauge factor. The nano smart-paint can detect sufficient impact to cover the damaged energy range of the composite around 1~3J. The voltage outputs from the sprayed paints show fairly linear responses after signal processing. The impact makes deformation of the structure and it brings change of piezoresistivity of the paint and those converts into voltage output consequently by means of a simple signal processing system. The nano smart paint is lightweight and easily applied to the structural surface, and there is no stress concentration. The nano smart paint is expected to be a cost effective and sensitive multi-functional sensor for composites and other damage monitoring applications in the field of structural health monitoring.

Identification of Cutting Mechanisms in Orthogonal Cutting of Glass Fiber Reinforced Composites

  • Choe Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.39-45
    • /
    • 2000
  • In recent years, composite materials such as fiber reinforced plastics (FRP) have gained considerable attention in the aircraft and automobile industries due to their light weight, high modulus and specific strength. In practice, control of chip formation appears to be the most serious problem since chip formation mechanism in composite machining has significant effects on the finished surface [1,2,3,4,5]. Current study will discuss frequency analysis based on autoregressive (AR) time series model and process characterization in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the different chip formation mechanisms and model coefficients are established.(omitted)

  • PDF

Strain monitoring of the composite high pressure tanks using the FBG sensors (광섬유 센서를 이용한 복합재료 고압탱크 변형률 측정)

  • 박재성;윤종훈;공철원;장영순;이원복;노태호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.141-145
    • /
    • 2003
  • The FBG sensors are inserted on the liners of the filament wound pressure tanks. The strains near the welding region of the liners are monitored in the hydro-pressurizing tests. The hydro-pressurizing tests consist of the proof tests at 4500 or 3300 psi and repeated test at the operating pressure, 3000 psi. The FBG sensors work well under $3000\mu\varepsilon$, but the strains calculated from the reflected signals are instable at the high strain level. The transverse compression on the sensor head results in the split of the reflected peaks, and the calculating algorism from the split peaks is not robust under the various signal condition. The FBG sensors fracture near $7500\mu\varepsilon$ level and lose their function permanently.

  • PDF

Vibration Control of a Glass-Fiber Reinforced Termoplastic Composite Beam (유리섬유를 함유한 열가소성 복합재 보의 진동제어)

  • 권대규;윤여흥;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.11-14
    • /
    • 2000
  • This paper presents the vibration control of a glass-fiber reinforced thermoplastic composite beam with a distributed PVDF sensor and piezo-ceramic achlator. The three types of different controllen which are PID, H$\infty$ , and p-synthesis ontrollcr are employed to achieve vibration suppression in the transient vibration of composite beam. In the H$\infty$ , controller design, 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to struchred uncertainty is adopled Lo suppress the vibration. If the controller designed by H$\infty$ , theory does not satisfy control performance, it is improved by $\mu$ -synthesis method with D-K iteration so that the$\mu$-contoller based on the structured singular value satisfies the nominal performance and robust performance Simulations and experiments were carried out with the designed controllers m order to demonstrate the suppression efficiency of each controller.

  • PDF

The Vibration Analysis for the Metal-Piezoceramic Composite Thin Plates (금속-압전세라믹 복합 평판의 진동해석)

  • Go Young-Jun;Nam Hyo-Duk;Chang Ho-Gyeong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.307-310
    • /
    • 1999
  • An analysis of the free vibration for the metal-piezoceramic composite thin plates is described. The purpose of this study is to develop a equivalent method for the free vibration analysis of metal-piezoceramic composite thin plates which are not symmetrically about the adhered layer and the piezoelectric effect. In order to confirm the validity of the vibration analysis, double Fourier sine series is used as a modal displacement function of a metal-piezoceramic composite thin plate and applied to the free vibration analysis of the plate under various boundary conditions.

  • PDF

Applications of Fiber Bragg Grating Sensor Technology (FBG 센서 기술의 응용 사례)

  • Kang Dong-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.3-9
    • /
    • 2006
  • Among many fabrication methods of composite materials, filament winding is the most effective method for fabricating axis-symmetric structures such as pressure tanks and pipes. Filament wound pressure tanks are under high internal pressure during the operation and it has the complexity in damage mechanisms and failure modes. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. In this paper, we fabricated several filament wound pressure tanks with embedded FBG sensors and conducted some kinds of experiments such as an impact test, a bending test, and a thermal cycling test. From the experimental results, it was successfully demonstrated that FBG sensors are very appropriate to composite structures fabricated by filament winding process even though they are embedded into composites by multiplexing.

  • PDF

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material (압전재료와 점탄성 재료를 이용한 지능 복합적층보의 하이 브리드 진동제어)

  • Kang, Young-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.148-153
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping hale been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Modeling of IPMC (Ionic Polymer-Metal Composite) Sensor to Effectively Detect the Bending Angles of a Body

  • Park, Ki-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.375-381
    • /
    • 2011
  • Ionic polymer-metal composite(IPMC) consists of an ion conductive membrane plated by metallic electrodes on both surfaces. When it bends, a voltage is generated between two electrodes. Since IPMC is flexible and thin, it can be easily mounted on the various surfaces of a body. The present study investigates a sensor system using IPMC to effectively detect the bending angles applied on IPMC sensor. The paper evaluates several R and C circuit models that describe the physical composition of IPMC and selects the best model for the detection of angles. The circuit models implemented with a charge model describe the relationship between input bending angles and output voltages. The identification of R and C values was performed by minimizing the error between the real output voltages and the simulated output voltages from the circuit models of IPMC sensor. Then the output signal of a sensor was fed into the inverse model of the identified model to reproduce the bending angles. In order to support the validation of the model, the output voltages from an arbitrary bending motion were also applied to the selected inverse model, which successfully reproduced the arbitrary bending motion.