• 제목/요약/키워드: Composite Rods

검색결과 58건 처리시간 0.029초

직접압출에 의한 Cu-Al 층상 복합재료 봉의 금속유동과 계면접합 (Metal Flow and Interface Bonding of Copper Clad Aluminum Rods by the Direct Extrusion)

  • 윤여권;김희남
    • 한국정밀공학회지
    • /
    • 제18권6호
    • /
    • pp.166-173
    • /
    • 2001
  • Composite materials consists of two or more different material layers. The usefulness of clad metal rods forms the possibilities of combination of properties of different metals. Copper clad aluminum composite materials are being used for economic and structural purpose. In this study, composite billet consists of commercially pure copper and aluminum(A6061) and experimental conditions consist of the combinations of clad thickness, extrusion ratio, and semi-cone angle of die. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios, semi-cone angles of die, and composition rate of Cu:Al.

  • PDF

원추형 다이를 이용한 Cu-Al 층상 복합재료의 직접압출 (The Direct Extrusion of Copper Clad Aluminum Composite Materials by Using the Conical Dies)

  • 윤여권;김희남
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1541-1550
    • /
    • 2001
  • This paper describes experimental investigations in the direct extrusion of copper clad aluminum rods through conical dies. Composite materials consist of two or more different material layers. Copper clad aluminum composite materials are being used fur economic and structural purposes and the development of an efficient production method of copper clad aluminum composite material rods by extrusion is very important, It is necessary to know the conditions in which successful uniform extrusion ,and sound cladding may be carried out without any defects in the direct extrusion. There are several variables that have an influence on determining a sound clad extrusion. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios and semi-cone angles of die. Subsequently, the microscopic inspection of interface bonding is carried out for extruded products. By measuring hardness, along extrusion way of products, a variation of hardness has been discussed. Proportional flow state has been considered by measuring radius ratio of Cu sleeve and Al core before and after extrusion.

Cu-Al 층상 복합재료 직접압출시 금속의 유동상태와 경도 변화 (Variations of Metal Flow State and Hardness on the Direct Extrusion of Copper Clad Aluminum Rods)

  • 강원영;윤여권;박성훈;김희남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.759-765
    • /
    • 2000
  • A composite material consists of two or more different material layers. Copper clad aluminum composite materials are being used for economic and structural reasons. This study is concerned with experimental investigation in the direct extrusion of copper clad aluminum rods through conical dies. The suggestion are given for the proper extrudability of copper clad aluminum rods via hot direct extrusion. This paper presents the variation of flow state and hardness at a variable of extrusion ratio and semi-angle of die. By measuring after and before extrusion radius ratio of Cu sleeve and Al core, proportional flow state has been considered. And also by measuring hardness, through extrusion way, a variation of hardness has been considered.

  • PDF

Cu-Al 층상 복합재료의 직접압출시 공정변수의 영향 (The Effect of Process Parameter in Direct Extrusion of Copper Clad Aluminum Composite Materials)

  • 윤여권;김희남;김용수
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.28-34
    • /
    • 2000
  • Copper clad aluminum composite materials are being used for economic and structural purposes, The development of an efficient production method of copper clad aluminum composite material rods by extrusion is very important. This paper describes experimental investigations in the direct extrusion of copper clad aluminum rods through conical dies. There are several parameters that have an influence on determining a sound clad extrusion. These variables are extrusion temperature, extrusion ratio, semi-cone angle of die, extrusion force, extrusion velocity, friction of between the container and billet, percentage of copper used and ratio of flow stress of copper to aluminum. In order to investigate the influence of extrusion temperature, extrusion ratio, semi-cone angle of die on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with these variation.

  • PDF

복합압출재료봉의 공정변수가 성형 적합성에 미치는 영향 (Influence of Process Parameters on the Forming Compatibility in Composite Extrusion Rods)

  • 장동환
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.80-86
    • /
    • 2009
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. From the simulation results, the sleeve cladding rate at the core/sleeve interface was recorded as a distribution of diameter ratio and interference conditions, which will be useful for the investigations of the bonding process during co-extrusion process. In addition, the results of the co-extrusion, connected with the results of the variations of diameter rate and average contact pressure, demonstrate a good agreement and present the possibility of describing the parameters of the plastic zones in non-uniform deformation of these type of composite materials.

Growth of $GdVO_4$ composite single-crystal rods by the double-die edge-defined film-fed growth technique

  • Furukawa, Y.;Matsukura, M.;Nakamura, O.;Miyamoto, A.
    • 한국결정성장학회지
    • /
    • 제18권1호
    • /
    • pp.1-4
    • /
    • 2008
  • The growth of composite-structured Nd:$GdVO_4$ single crystal rods by the double die EFG method is reported. Two crucibles are combined with an outer and inner die for ascending of different melt. The composite-structured Nd:$GdVO_4$ single crystal rods with a length of 50 mm and an outer diameter of 5 mm including of inner Nd-doped core region with diameter 3 mm were grown successfully. Nd distribution in the, radial direction has graded profile from result of EPMA. Absorption coefficient in the core region at 808 nm was $42cm^{-1}$. Finally, we demonstrated the laser oscillation using our composite crystal and 2-W output was obtained.

박막형 고강도 폴리머 및 열화원인별 적용 몰탈내에 섬유로드를 삽입하는 RC 구조물의 보강공법 연구 (Flexural Reinforcement of RC Structures with composite fiber rods inserted in high strength special purposed polymer mortar for various deteriorated conditions.)

  • 정원용;이상근;박홍진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.828-835
    • /
    • 2000
  • In recent years, RC structures need reinforcement due to physical and chemical deterioration, reduction of serviceability and structural capacity. For reinforcement of RC structures, steel plate attachment, area increase and composite fiber sheet attachment methods are used, but there are some problems like weight increase, workability, quality control and fire resistance capacity. This study presents the effectiveness of flexural reinforcement of RC beams using composite rods that are inserted in high strength special purposed polymer mortar.

  • PDF

Structural behavior of the stiffened double-skin profiled composite walls under compression

  • Qin, Ying;Li, Yong-Wei;Lan, Xu-Zhao;Su, Yu-Sen;Wang, Xiang-Yu;Wu, Yuan-De
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.1-12
    • /
    • 2019
  • Steel-concrete composite walls have been proposed and developed for applications in various types of structures. The double-skin profiled composite walls, as a natural development of composite flooring, provide structural and architectural merits. However, adequate intermediate fasteners between profiled steel plates and concrete core are required to fully mobilize the composite action and to improve the structural behavior of the wall. In this research, two new types of fasteners (i.e., threaded rods and vertical plates) were proposed and three specimens with different fastener types or fastener arrangements were tested under axial compression. The experimental results were evaluated in terms of failure modes, axial load versus axial displacement response, strength index, ductility index, and load-strain relationship. It was found that specimen with symmetrically arranged thread rods sustained more stable axial strain than that with staggered arranged threaded rods. Meanwhile, vertical plates are more suitable for practical use since they provide stronger confinement to profiled steel plate and effectively prevent the steel plate from early local buckling, which eventually enhance the composite action and increase the axial compressive capacity of the wall. The calculation methods were then proposed and good agreement was observed between the test results and the predicted results.

Braided composite rods: Innovative fibrous materials for geotechnical applications

  • Fangueiro, Raul;Rana, Sohel;Gomes Correia, A.
    • Geomechanics and Engineering
    • /
    • 제5권2호
    • /
    • pp.87-97
    • /
    • 2013
  • In this paper, a novel fibrous material known as axially reinforced braided composite rods (BCRs) have been developed for reinforcement of soils. These innovative materials consist of an axial reinforcement system, comprised of longitudinally oriented core fibres, which is responsible for mechanical performance and, a braided cover, which gives a ribbed surface texture for better interfacial interactions with soils. BCRs were produced using both thermosetting (unsaturated polyester) and thermoplastic (polypropylene) matrices and synthetic (carbon, glass, HT polyethylene), as well as natural (sisal) core fibres. BCRs were characterized for tensile properties and the influence of core fibres was studied. Moreover, BCRs containing carbon fibre in the core composition were characterized for piezoresistivity and strain sensing properties under flexural deformation. According to the experimental results, the developed braided composites showed tailorable and wide range of mechanical properties, depending on the core fibres and exhibited very good strain sensing behavior.

Cyclic test of buckling restrained braces composed of square steel rods and steel tube

  • Park, Junhee;Lee, Junho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.423-436
    • /
    • 2012
  • In this study total of six buckling-restrained braces (BRBs) were manufactured using a square steel rod as a load-resisting core member and a hollow steel tube as restrainer to prevent global buckling of the core. The gap between the core and the tube was filled with steel rods as filler material. The performances of the proposed BRB from uniaxial and subassemblage tests were compared with those of the specimens filled with mortar. The test results showed that the performance of the BRB with discontinuous steel rods as filler material was not satisfactory, whereas the BRBs with continuous steel rods as filler material showed good performance when the external tubes were strong enough against buckling. It was observed that the buckling strength of the external tube of the BRBs filled with steel rods needs to be at least twice as high as that of the BRBs filled with mortar to ensure high cumulative plastic deformation of the BRB.