• Title/Summary/Keyword: Composite Right/Left Handed

Search Result 91, Processing Time 0.026 seconds

Dual-Wideband Bandpass Filter Using Distributed Composite Right/Left-Handed Transmission Line Quad-Mode Resonators (분산 CRLH 전송선로 4중 모드 공진기를 이용한 이중-광대역 대역통과 여파기 설계)

  • Sung, Gyuje;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.84-89
    • /
    • 2017
  • This paper presents a dual-wideband bandpass filter (BPF) with high band-to-band isolation and skirt selectivity using distributed composite right/left-handed (CRLH) transmission line (TL) quad-mode resonators (QMRs). The results of the proposed distributed CRLH TL unit cell analysis are used to establish the scattering parameters and the resonance frequencies of the QMR constituting the dual-wideband BPF. A novel dual-wideband bandpass filter is designed and fabricated, using the derived scattering characteristics. The measured results show that the fabricated dual-wideband bandpass filter has an insertion loss of less than 1.08dB in the lower band, and of 2.01dB in the upper band, a bandwidth of 2.8-5.52GHz and 9.68-12.26GHz, and a band-to-band isolation of more than 38dB, from 6.34-8.42GHz.

Balanced Mixer Based on Composite Right/Left-Handed Transmission Line Leaky-Wave Antenna (CRLH 전송 선로 리키 웨이브 안테나를 이용한 평형 믹서)

  • Kim, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.985-991
    • /
    • 2008
  • This paper presents a novel balanced mixer receiver front-end design based on a metamaterial structure applicable to differential-/common-mode excitation. This metamaterial structure functions as a leaky-wave antenna and provides in-trinsic common-mode suppression. Low LO leakage and high RF to LO isolation are achieved without additional filters for LO and RF paths. The metamaterial is based on a unit-cell which under a differential-mode excitation behaves like a composite right/left-handed(CRLH) metamaterial. In contrast, the metamaterial unit-cell is below cut-off under a common-mode excitation. Experimental results are used to verify the proposed metamaterial's differential-/common-mode characteristics. The metamaterial is integrated with a balanced mixer design resulting in an operation frequency range of $1.96{\sim}2.40$ GHz with an optimum mixer conversion loss of 21.1 dB at 2,4 GHz.

Linearity and Efficiency Improved outphasing Class-E Power Amplifier Using Composite Right/Left-Handed Transmission Lines Combiner (Composite Right/Left-Handed Transmission Lines 결합기를 이용하여 선형성과 효율을 향상한 outphasing E급 전력 증폭기)

  • Eun, Sang-Ki;Cho, Choon-Sik;Lee, Jae-W.;Kim, Jae-Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1313-1321
    • /
    • 2008
  • outphasing class-E power amplifier using composite right/left-handed transmission lines(CRLH-TL) is proposed at 2.4 GHz. The power combiner including CRLH-TL is designed to suppress the second and third harmonics to increase linearity and the output problem of the conventional outphasing amplifier is also solved by the proposed outphasing amplifier. So the P AE is improved. The measured maximum output power at the fundamental frequency shows 31.8 dBm, whereas the PAE shows 50 % with 14 dBm input power excited. The IMD3 is improved by 5 dB compared to that of conventional outphasing amplifier.

Fluidically-Controlled Phase Tunable Line Using Inkjet-Printed Microfluidic Composite Right/Left Handed Transmission Line (유체를 이용하여 위상응답을 제어하기 위해 잉크젯 프린팅으로 구현한 미세유체채널 복합 좌·우향 전송선로)

  • Choi, Sungjin;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • In this paper, a novel fluid controlled phase tunable line using inkjet printed microfluidic composite right/left-handed(CRLH) transmission line(TL) is proposed. A CRLH-TL prototype has been inkjet-printed on a paper substrate using silver nano particle ink. In addition, a laser-etched microfluidic channel in poly methyl methacrylate(PMMA) has been integrated with the CRLH TL using inkjet-printed SU-8 as a bonding material. The proposed TL provides excellent phase-tuning capability that is dependent on the different fluidic materials used. As the fluid is changed, the proposed TL can have negative-phase, zero-phase, and positive-phase characteristics at 900 MHz and reflection coefficient is maintained to below -10 dB. The performance of the proposed TL is successfully validated using simulation and measurement results.

Attenuator using Lossy Left-Handed Transmission Line and Vector Modulator Application (손실이 있는 Left-Handed 전송선로를 이용한 감쇠기와 벡터 변조기 응용)

  • Kim, Seung-Hwan;Kim, Ell-Kou;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.399-405
    • /
    • 2009
  • This paper proposes a design of attenuator based on meta-material structure and its application. The unit-cell attenuator based on the lossy transmission line consists of the CRLH(Composite Right/Left Handed) transmission line and PIN diodes to be controlled internal loss according to diode bias voltage to change resistance of diode. Also, to reduce the initial losses, there is used parallel connection of PIN diodes. To increase attenuations, it is connected a cascade unit-cell of attenuator with periodic structure. The attenuation quantities of unit-cell are about 10dB and phase variations are 15o maximum at 1.5 GHz ~ 2.5 GHz. Also, its application is represented a vector modulator.

  • PDF

CRLH Rectangular Waveguide with Balanced Condition above Cut-off Frequency (차단 주파수 이상에서 평형 조건을 만족하는 CRLH 직각 도파관)

  • Kim, Dong-Jin;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.912-918
    • /
    • 2011
  • In this paper, a composite right-/left-handed(CRLH) rectangular waveguide satisfying a balanced condition above the cut-off frequency is presented. The proposed structure consists of one shorted stub and two twisted H-plane irises which produce an effectively negative permeability and permittivity, respectively. The CRLH structure can independently control the series and shunt resonance frequencies of a CRLH transmission line which determine the left-handed(LH) and right-handed(RH) bands due to a minimized coupling between a shorted stub and twisted H-plane irises. Thus, the design of the CRLH waveguide satisfying a balanced condition is possible. To analyze the CRLH structure, a crossly connected equivalent circuit is derived. The simulated and measured results confirm that the proposed CRLH waveguide has a transmission property without a band gap among the LH and RH bands.

Dual-Band VCO using Composite Right/Left-Handed Transmission Line and Tunable Negative Resistanc based on Pin Diode (Composite Right/Left-Handed 전송 선로와 Pin Diode를 이용한 조절 가능한 부성 저항을 이용한 이중 대역 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.16-21
    • /
    • 2007
  • In this paper, the dual-band voltage-controled oscillator (VCO) using the composite right/left-handed (CRLH) transmission line (TL) and the tunable negative resistance based on the fin diode is presented. It is demonstrated that the CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the phase slope of the CRLH TL, and the frequency ratio of the two operating frequencies can be a non-integer. Each frequency band of VCO has to operate independently, so we have used the tunable negative resistance based on the pin diode. When the forward bias has been into the pin diode, the phase noise of VCO is $-108.34\sim-106.67$ dBc/Hz @ 100 kHz in the tuning range, $2.423\sim2.597$ GHz, whereas when the reverse bias has been fed into the pin diode, that of VCO is $-114.16\sim-113.33$ dBc/Hz @ 100 kHz in the tuning range, $5.137\sim5.354$ GHz.

Dual-Band High-Efficiency Class-F Power Amplifier using Composite Right/Left-Handed Transmission Line (Composite Right/Left-Handed 전송 선로를 이용한 이중 대역 고효율 class-F 전력증폭기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.53-59
    • /
    • 2008
  • In this paper, a novel dual-band high-efficiency class-F power amplifier using the composite right/left-handed (CRLH) transmission lines (TLs) has been realized with one RF Si lateral diffusion metal-oxide-semiconductor field effect transistor (LDMOSFET). The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult in dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 880 MHz and 1920 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 880 MHz and 1920 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 79.536 % and 44.04 % at two operation frequencies, respectively.

Flexible Zeroth-Order Resonant(ZOR) Antenna Independent of Curvature Diameter (곡률에 독립적인 플렉서블 기판 위에 설계된 영차 공진 안테나)

  • Lim, In-Seop;Chung, Tony J.;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • In this paper, we propose a flexible zeroth-order resonant(ZOR) antenna. Its zero phase constant ensures that the antenna performance is independent of substrate deformation. A composite right/left-handed transmission line is designed based on coplanar waveguide technology to realize the zeroth-order resonance phenomenon. The CRLH is an implementation of metamaterial(left handed material) which is composed of shunt inductance and series capacitance. In order to yield additional circuital parameter, chip inductor and gap capacitor is added, respectively. The proposed ZOR antenna provides good performances: reasonable bandwidth(6.5 %) and peak gain(0.69~1.39 dBi). Simulated and measured results show that the antenna's resonant frequencies and radiation patterns are almost unchanged at different curvature diameters of 30, 50, 70 mm, as well as for a flat surface.

Dual-Mode Balanced Filter in Symmetric Composite Right/Left-Handed Transmission Line Structure (CRLH 전송선로 대칭구조의 이중모드 평형 필터)

  • Kim, Young;Sim, Seok-Hyun;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.196-201
    • /
    • 2013
  • In this paper, a dual-mode balanced filter with symmetric coupled composite right/left-handed transmission line is introduced. Unlike the other symmetric structure, this configuration has the ability to operate under both common- and differential-mode excitation. These properties are achievable through providing physical short circuit by means of ground vias at the center of each unit-cell along the symmetry plane of the structure. Because the CRLH unit-cells are operated under both common- and differential-mode excitation, we implemented a balanced filter using these properties. To validity these features, a five-cell four port coupled CRLH-TL is simulated, fabricated and measured and the obtained performances agree with the simulation results under both common- and differential-mode excitation.