• 제목/요약/키워드: Composite Panel

검색결과 546건 처리시간 0.021초

보강된 복합적층 원통형패널의 좌굴거동 (Buckling Behavior of Stiffened Laminated Composite Cylindrical Panel)

  • 이종선;원종진;홍석주;윤희중
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.88-93
    • /
    • 2003
  • Buckling behavior of stiffened laminated composite cylindrical panel was studied using linear and nonlinear deformation theory. Various buckling load factors are obtained for stiffened laminated composite cylindrical panels with rectangular type longitudinal stiffeners and various longitudinal length to radius ratio, which made from Carbon/Epoxy USN150 prepreg and are simply-supported on four edges under uniaxial compression. Buckling behavior design analyses are carried out by the nonlinear search optimizer, ADS.

최소각 추적 방식을 이용한 직교적층평판에 대한 플러터 해석 (Panel Flutter Analysis of Cross-Ply Composite Plate Utilizing Minimum Angle Tracking)

  • 김기언;박흥석;김현순
    • 한국군사과학기술학회지
    • /
    • 제2권2호
    • /
    • pp.271-278
    • /
    • 1999
  • An alternative panel flutter approach utilizing minimum angle is presented. The minimum angle is the lowest value among the angles between modes i and j at a certain pressure condition. This method utilizes eigenvectors rather than eigenvalues. Cross-ply composite plates are considered in this study. A remarkable result of this investigation is that the angle always dropped gradually to zero for all presented examples

  • PDF

The effect of curvature on the impact response of foam-based sandwich composite panels

  • Yurddaskal, Melis;Baba, Buket Okutan
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.983-997
    • /
    • 2016
  • The aim of this study is to investigate the impact behavior and impact-induced damage of sandwich composites made of E-glass/epoxy face sheets and PVC foam. The studies were carried out on square flat and curved sandwich panels with two different radius of curvatures. Impact tests were performed under impact energies of 10 J, 25 J and 80 J using an instrumented drop-weight machine. Contact force and displacement versus time and contact force- displacement graphs of sandwich panels were presented to determine the panel response. Through these graphs, the energy absorbing capacity of the sandwich panels was determined. The impact responses and failure modes of flat and curved sandwich panels were compared and the effect of curvature on sandwich composite panel was demonstrated. Testing has shown that the maximum contact force decrease while displacement increases with increasing of panel curvature and curved panels exhibits mixed failure mode, with cylindrical and cone cracking.

철도차량 내장재용 복합재료 패널의 차음성능에 관한 연구 (A Study on the Sound Insulation Performance of the Composite-Material Panel for Railroad Vehicle)

  • 김봉기;김재승;김현실;강현주;김상렬
    • 한국철도학회논문집
    • /
    • 제6권1호
    • /
    • pp.10-14
    • /
    • 2003
  • Since most of main noise sources of the railroad vehicle are transmitted to the passenger's ear through the vibration of the panel, the sound insulation performance of the panels should be high enough to protect the passenger's ear from the noisy environment. Specifically, the composite materials which are generally used for reducing the weight of the vehicle compartment have the low insulation performance, thus noise control actions should be taken appropriately by considering the insulation performance of the panels. In this study, the insulation performances of the inner/outer panels of the compartment are evaluated. In addition, the contribution of the insulation performance of aluminum door is estimated and compared to those of composite panels. The results can furnish an in-depth understanding of the insulation characteristics of the panel of railroad vehicle.

펄라이트 치환율에 따른 경량복합패널 심재의 밀도 및 열전도율 특성 (Density and Thermal Conductivity Property of the Lightweight Composite Panel Core According to Pearlite Replacement ratio)

  • 김헌태;정병열;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.175-176
    • /
    • 2014
  • Recently, in the apartment house of our country, office building, apartment, and etc, the lightweight composite panel is much used as the partition wall body. This is due to be very convenient when the execution and dismantling is convenient and it forms the space which the consumer in the space desires. Therefore, in this research, the thermal conductivity property of the lightweight composite panel core according to the replacement ratio variation of the pearlite tries to be analyze. As the density test result and replacement ratio of the pearlite increased, the density showed the tendency to rise. the replacement ratio of the pearlite increased, the absorption rate showed the tendency to fall. And this is determined that absorption rate is degraded due to the increase in the density. the thermal conductivity test result and pearlite replacement ratio increased, the tendency that the thermal conductivity increases was represented.

  • PDF

복합재 샌드위치 패널 발사관의 폭발충격 영향도 분석 (The Effect of Pyro Shock on Canister with Composite Sandwich Panel)

  • 최원홍
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.667-673
    • /
    • 2016
  • Canister with composite sandwich panel has been suggested owing to its higher stiffness and strength over a weight for square shaped canisters. The pyro shock induced by a short time explosion inside a canister is generally considered to be the most severe source of load affecting on the entire structure. Therefore, in this study, the approach and modeling method to identify the effect of pyro shock on canister with composite sandwich panel in a numerical way were mainly discussed. Moreover, the verification was implemented through comparison with test results.

A numerical study on vibration behavior of fiber-reinforced composite panels in thermal environments

  • Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.691-699
    • /
    • 2022
  • This paper is devoted to the presentation of a numerical study on vibration behavior of composite panels reinforced by glass fibres and carbon nanotubes (CNTs) subjected to thermal environments. The effect of temperature variation has been included as thermal load acting on in-plane direction of the panel. To model the composite material, a micromechanical model which contains random dispersion of nanotubes and single-direction fibers has been selected. The geometry of the panel has been considered to have a single curveture along its width. Based on the above assumptions, the governing equations have been derived by using thin shell theory capturing the panel curveture and also nonlinear deflections. Finally, the panel dependence on various factors such as the curveture, nanotube amount, fiber volume, fiber direction and temperature variation has been researched.

목재 파티클과 재생폴리에틸렌을 이용한 목질복합패널의 물리·기계적 성질 (Physical and Mechanical Properties of Composite Panel Manufactured from Wood Particle and Recycled Polyethylene)

  • 한태형;권진헌
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권4호
    • /
    • pp.340-348
    • /
    • 2009
  • 본 연구에서는 소경저질재를 원료로 한 목재 파티클과 폐플라스틱 중에서도 많이 발생되고 있는 열가소성 재생폴리에틸렌을 결합제로 사용하여 복합패널을 제조하였다. 목재 파티클의 크기(1/32", 1/4", 1/2")와 재생폴리에틸렌의 혼합비(10%, 30%, 50%)에 따라 복합패널을 제조하여 물성을 조사하였다. 복합패널의 밀도는 같은 혼합비에서 목재 파티클이 클수록 다소 감소하는 경향을 나타냈다. 흡수 두께팽창률과 수분흡수율은 재생폴리 에틸렌의 혼합비가 증가할수록 감소하였으며, 재생폴리에틸렌이 30% 이상 혼합될 경우 14일간의 침지실험에서 치수안정성이 매우 우수하였다. 재생폴리에틸렌의 혼합비가 증가할수록 박리강도가 높아 졌으며, 휨강도 또한 같은 경향을 나타냈다. 습윤 휨강도 실험에서 30% 이상 재생폴리에틸렌을 혼합하여 제조된 복합패널은 기건 휨강도와 큰 차이를 보이지 않았다. SEM 사진 관찰을 통해 재생폴리에틸렌이 용융되어 목재 조직 내에 일부 침투되어 쐐기 형태의 기계적 결합을 형성하고 있었으며, 목재 파티클을 감싸는 매질(matrix)로써 결합되어 있는 것을 관찰할 수 있었다.

반응면 기법을 이용한 적층복합재료판의 신뢰성해석 (Reliability Analysis of laminated Composite Panel using Response Surface Method)

  • 방제성;김용협
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.187-190
    • /
    • 2001
  • Response surface method is applied to evaluate the reliability of laminated composite panels. Since the linear and nonlinear first-ply failure load are computed using deterministic finite element analysis, new probabilistic finite element analysis is not necessary. Tsai-Wu criterion is used to construct the limit state suface. Material properties, layer thickness and lamina strengths of laminated composite panel are treated as random design variables. feasibility and accuracy of current method is validated using Monte-Carlo method Which perform thousand times of finite element analysis directly.

  • PDF

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.