• Title/Summary/Keyword: Composite Mechanical Property

Search Result 521, Processing Time 0.022 seconds

Effect of Porosity Characteristics of Hollow Composite Yarns to the Comfort Property of the Fabrics for the High Emotional Garment (중공 복합사 직물의 기공도 특성이 고감성 의류용 직물의 쾌적특성에 미치는 영향)

  • Kim, Hyun Ah;Kim, Young Soo;Kim, Seung Jin
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.218-229
    • /
    • 2014
  • The wearing comfort of garment is governed by two kinds of characteristics such as moisture and thermal transport properties and mechanical properties of fabrics. The porosity influenced by yarn and fabric structural parameters is known as main factor for wearing comfort of garment related to the moisture and thermal transport properties. This study investigated effect of porosity of composite yarns to the moisture and thermal comfort properties of composite fabrics made of hollow composite DTY and ATY yarns. The theoretical porosity and pore size were inversely proportional to cover factor of fabric, but cover factor was not correlated with experimental pore size. The wicking property of hydrophobic PET filament fabric showed inferior result irrespective of porosity, pore size and cover factor. The drying rate was superior at composite fabrics with high pore size and low cover factor, and pore size was dominant factor for drying property. On the other hand, thermal conductivity of composite fabric was mainly influenced by cover factor and not influenced by porosity. Air permeability was influenced by both porosity and cover factor and was highly increased with increasing porosity and decreasing fabric cover factor.

Thermodynamic behavior of the composite system composed of two simple ideal gas systems (두 이상기체 단순계로 구성된 복합계의 열역학적 거동)

  • Jeong, Pyeong-Seok;Jo, Gyeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.832-839
    • /
    • 1998
  • The potential work is defined as the maximum available work extractable from a composite system. It is important concept to understand the behavior of a composite system because it is a property of the composite system and shows the possible room for the system to change its state by itself. To explain this concept quantitatively, the behavior of a composite system composed of two simple ideal gas systems is analyzed. The potential work of the composite system is estimated, the various reversible processes from a given state to the equilibrium state and the processes on which potential works are constant are shown on the T-P and S-V planes. Such an effort will be necessary to understand and characteristics of composite systems as well as helpful for a deeper comprehension of the energy conversion principles.

Surface Modification of Glass Fiber for Polymer Insulator by Plasma Surface Treatment (플라즈마 표면처리에 따른 고분자절연재료용 유리섬유의 표면개질)

  • 임경범;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.206-206
    • /
    • 2003
  • It is hard to expect excellent electrical, mechanical and chemical properties from most of the composite materials presently used as insulators due to insufficient wettability property caused by the difference of interfacial properties between the matrix material and the reinforcer. Therefore, various interfacial coupling agents have been developed to improve the interfacial properties of composite materials. But if the wettable coupling agents are used outdoor for a long time, change in quality takes place in the coupling agents themselves, bringing about deterioration of the properties of the composite materials. In this study, glass surface was treated by plasma to examine the effect of dry interface treatment without coupling agent. It was identified that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. Also, the surface resistance rate and dielectric property were improved.

Surface Modification of Glass Fiber for Polymer Insulator by Plasma Surface Treatment (플라즈마 표면처리에 따른 고분자절연재료용 유리섬유의 표면개질)

  • 임경범;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.206-212
    • /
    • 2003
  • It is hard to expect excellent electrical, mechanical and chemical properties from most of the composite materials presently used as insulators due to insufficient wettability property caused by the difference of interfacial properties between the matrix material and the reinforcer. Therefore, various interfacial coupling agents have been developed to improve the interfacial properties of composite materials. But if the wettable coupling agents are used outdoor for a long time, change in quality takes place in the coupling agents themselves, bringing about deterioration of the properties of the composite materials. In this study, glass surface was treated by plasma to examine the effect of dry interface treatment without coupling agent. It was identified that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. Also, the surface resistance rate and dielectric property were improved.

Nonlinear vibration analysis of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Li, Xinwu
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.395-409
    • /
    • 2016
  • Nonlinear vibration characteristics of composite laminated trapezoidal plates are studied. The geometric nonlinearity of the plate based on the von Karman's large deformation theory is considered, and the finite element method (FEM) is proposed for the present nonlinear modeling. Hamilton's principle is used to establish the equation of motion of every element, and through assembling entire elements of the trapezoidal plate, the equation of motion of the composite laminated trapezoidal plate is established. The nonlinear static property and nonlinear vibration frequency ratios of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results published in the open literatures. Moreover, the effects of the ply angle and the length-high ratio on the nonlinear vibration frequency ratios of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are analyzed for the different ply angles and harmonic excitation forces.

Tribological Characteristics of Carbon Nanotube Aluminum Composites According to Fabrication Method and Content of Carbon Nanotube (알루미늄탄소나노튜브 복합재의 가공 방법과 탄소나노튜브 함량에 따른 트라이볼로지 특성)

  • Lee, Young-Ze;Lee, Jung-Hee;Kim, Il-Young;Lee, Gyu-Sun;Baik, Seung-Hyun;Youn, Jeong-Il;Kim, Young-Jig
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.269-274
    • /
    • 2008
  • Carbon nanotube composite is considered to be a good candidate material for composite material because of its excellent mechanical property and low density under high temperature as well as good wear and frictional properties. In this study, tribological characteristics of carbon nanotube aluminum composite were evaluated using pin-on-disk wear tester. Spark Plasma Sintering method is more effective than Hot Pressing method in terms of wear and friction. The composite with 1% CNT has the lowest friction and wear characteristic.

SiC-Whisker Dispersion and Mechanical Properties of $Al_2O_3-SiC Whisker$ Whisker Composite (SiC Whisker의 분산과 $Al_2O_3-SiC Whisker$ 복합재료의 기계적 성질)

  • 정수종;이주완;김득중;신유선;강석중
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.492-498
    • /
    • 1993
  • The pretreatment condition for uniform distribution of SiC whisker in A2O3-SiCw composites has been determined and the mechanical properties of the composites with various whisker contents have been measured. Good dispersion of the whisker can be obtained in a solution of pH=10.45 by ball milling and ultrasonic treatment. The relative density of hot pressed composites decreases with the whisker content up to 40vol%, but is found to be satisfactory, over 98% for all samples. The mechanical property of the composites is sensitive to the whisker dispersion. Uniform distributjion of the whisker is critical in order to guarantee good mechanical property.The samples containing 20~30vol% whisker show the best mechanical property within the studied range.

  • PDF

Processing and mechanical property evaluation of maize fiber reinforced green composites

  • Dauda, Mohammed;Yoshiba, Masayuki;Miura, Kazuhiro;Takahashi, Satoru
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.335-347
    • /
    • 2007
  • Green composites composed of long maize fibers and poly $\varepsilon$-caprolactone (PCL) biodegradable polyester matrix were manufactured by the thermo-mechanical processing termed as 'Sequential Molding and Forming Process' that was developed previously by the authors' research group. A variety of processing parameters such as fiber area fraction, molding temperature and forming pressure were systematically controlled and their influence on the tensile properties was investigated. It was revealed that both tensile strength and elastic modulus of the composites increase steadily depending on the increase in fiber area fraction, suggesting a general conformity to the rule of mixtures (ROM), particularly up to 55% fiber area fraction. The improvement in tensile properties was found to be closely related to the good interfacial adhesion between the fiber and polymer matrix, and was observed to be more pronounced under the optimum processing condition of $130^{\circ}C$ molding temperature and 10 MPa forming pressure. However, processing out of the optimum condition results in a deterioration in properties, mostly fiber and/or matrix degradation together with their interfacial defect as a consequence of the thermal or mechanical damages. On the basis of microstructural observation, the cause of strength degradation and its countermeasure to provide a feasible composite design are discussed in relation to the optimized process conditions.

Studies on Wood-based Composite Panel with Waste Tire - Properties of Composite Boards in Relation to Hot Pressing Conditions - (폐타이어를 이용한 목질계 복합판넬의 연구 - 열압조건에 의한 재질특성 -)

  • Lee, Weon-Hee;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.29-38
    • /
    • 1997
  • The effect and control of wood property of reconstituted composite panels for improved board properties by wood-waste materials and development of combination method for heterogeneous materials have been of interest to the wood science researchers. The purpose of this study is to consider the properties in relation to hot pressing conditions and to develope the optimum hot pressing condition with waste wood and waste tire for the manufacturing of composite boards. The study of composite boards for recycling of wood and waste tire is nothing up to the present. Physical and mechanical properties such as specific gravity, moisture content, swelling coefficient, modulus of rupture and modulus of elasticity in bending test were studied. The condition of 3-stage press time for the lowest moisture content of composite board was $4{\rightarrow}3{\rightarrow}3$ minutes. Specific gravity of composite panels was affected mainly by the amount of rubber chip. Because of the low rigidity and high elasticity in rubber chip, it is considered the composite panel was adequate material in the place of compression load, but not bending load. Therefore, it was concluded that a use of rubber-based wood composite panel is proper to the interior materials such as floor a room than exterior materials. From the test results, the most optimum hot pressing conditions were $4{\rightarrow}3{\rightarrow}3$ minutes for 3-stage press time and $45{\rightarrow}20{\rightarrow}5kg/cm^2$ for 3-stage press pressure. The rubber-based wood composite panel was very excellent in elasticity by combination of rubber chip in comparison with existing other wood-based materials. Therefore, it was considered that rubber-based wood composites can be applicable to every interior materials such as floor a room and will be expected to effective reuse and recycle of waste tires and wood-waste materials, and will be contribute to protection of environment pollution in earth.

  • PDF