• Title/Summary/Keyword: Composite Material Beam

Search Result 490, Processing Time 0.023 seconds

Non-linear analysis of composite steel-concrete beams with incomplete interaction

  • Cas, Bojan;Bratina, Sebastjan;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.489-507
    • /
    • 2004
  • The flexibility of the connection between steel and concrete largely influences the global behaviour of the composite beam. Therefore the way the connection is modelled is the key issue in its structural analysis. Here we present a new strain-based finite element formulation in which we consider non-linear material and contact models. The computational efficiency and accuracy of the formulation is proved with the comparison of our numerical results with the experimental results of Abdel Aziz (1986) obtained in a full-scale laboratory test. The shear connectors are assumed to follow a non-linear load-slip relationship proposed by Ollgaard et al. (1971). We introduce the notion of the generalized slip, which offers a better physical interpretation of the behaviour of the contact and gives an additional material slip parameter. An excellent agreement of experimental and numerical results is obtained, using only a few finite elements. This demonstrates that the present numerical approach is appropriate for the evaluation of behaviour of planar composite beams and perfect for practical calculations.

A Study on the Seismic Retrofit of Column in Educational Facilities Using Composite Material (복합소재를 이용한 교육시설의 기둥 내진보강공법에 관한 연구)

  • Park, Choon-Wook;Lee, Hung-Joo;Joo, Chi-Hong;Hong, Won-Hwa
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 2013
  • In paper after the strong earthquake of recently the Korea neighborhood, the Korean government survey show that the 86% of school buildings in Korea are in potential damage risk and only 14% of them are designed as earthquake-resistance buildings. Reinforcing projects of school have been conducting by the ministry of education, however their reinforcing methods done by not proved a engineering by experiment which results in uneconomical and uneffective rehabilitation for the future earthquake. An experimental and analytical study have been conducted for the shear and flexural reinforcing method of RC beam using composite beam. Based on the previous research, in this study, performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted and strengthening method is going to be on the market after their performance is proved by the test.

Free vibration of functionally graded thin beams made of saturated porous materials

  • Galeban, M.R.;Mojahedin, A.;Taghavi, Y.;Jabbari, M.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.999-1016
    • /
    • 2016
  • This study presents free vibration of beam made of porous material. The mechanical properties of the beam is variable in the thickness direction and the beam is investigated in three situations: poro/nonlinear nonsymmetric distribution, poro/nonlinear symmetric distribution, and poro/monotonous distribution. First, the governing equations of porous beam are derived using principle of virtual work based on Euler-Bernoulli theory. Then, the effect of pores compressibility on natural frequencies of the beam is studied by considering clamped-clamped, clamped-free and hinged-hinged boundary conditions. Moreover, the results are compared with homogeneous beam with the same boundary conditions. Finally, the effects of poroelastic parameters such as pores compressibility, coefficients of porosity and mass on natural frequencies has been considered separately and simultaneously.

A higher order shear deformation theory for static and free vibration of FGM beam

  • Hadji, L.;Daouadji, T.H.;Tounsi, A.;Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.507-519
    • /
    • 2014
  • In this paper, a higher order shear deformation beam theory is developed for static and free vibration analysis of functionally graded beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present higher-order shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Different higher order shear deformation theories and classical beam theories were used in the analysis. A static and free vibration frequency is given for different material properties. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes

  • Chaobing Yan;Tong Zhang;Ting Zheng;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.459-474
    • /
    • 2024
  • Classical and first-order nonlocal beam theory are employed in this study to assess the thermal buckling performance of a small-scale conical, cylindrical beam. The beam is constructed from functionally graded (FG) porosity-dependent material and operates under the thermal conditions of the environment. Imperfections within the non-uniform beam vary along both the radius and length direction, with continuous changes in thickness throughout its length. The resulting structure is functionally graded in both radial and axial directions, forming a bi-directional configuration. Utilizing the energy method, governing equations are derived to analyze the thermal stability and buckling characteristics of a nanobeam across different beam theories. Subsequently, the extracted partial differential equations (PDE) are numerically solved using the generalized differential quadratic method (GDQM), providing a comprehensive exploration of the thermal behavior of the system. The detailed discussion of the produced results is based on various applied effective parameters, with a focus on the potential application of nanotubes in enhancing sports bikes performance.

A comprehensive computational approach to assess the influence of the material composition on vibration, bending and buckling response of FG beam lying on viscoelastic foundation

  • Brahim Laoud;Samir Benyoucef;Attia Bachiri;Rabbab Bachir Bouiadjra;Abdelouahed Tounsi;Mahmoud M Selim;Hosam A. Saad
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.45-56
    • /
    • 2024
  • This paper proposes an analytical solution for the free vibration, bending and buckling a functionally graded (FG) beam resting on viscoelastic foundation. The materials characteristics of the FG beam are considered to be varying across the thickness according several power law functions. The governing equations are found analytically using a quasi-3D model that contains undetermined integral forms and involves few unknowns to derive. Navier's method for simply supported beam is employed to solve the problem. Numerical examples are presented and studied to demonstrate the accuracy and effectiveness of the proposed model. Then, a detailed parametric study is presented in the form of tables and graphs to study and analyze the effects of the different parameters on the response of FG beams with different material compositions resting on a viscoelastic foundation.

Nonlinear inelastic analysis of steel-concrete composite beam-columns using the stability functions

  • Park, Jung-Woong;Kim, Seung-Eock
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.763-785
    • /
    • 2008
  • In this study, a flexibility-based finite element method considering geometric and material nonlinearities is developed for analyzing steel-concrete frame structures. The stability functions obtained from the exact buckling solution of the beam-column subjected to end moments are used to accurately capture the second-order effects. The proposed method uses the force interpolation functions, including a moment magnification due to the axial force and lateral displacement. Thus, only one element per a physical member can account for the interaction between the bending moment and the axial force in a rational way. The proposed method applies the Newton method based on the load control and uses the secant stiffness method, which is computationally both efficient and stable. According to the evaluation result of this study, the proposed method consistently well predicts the nonlinear inelastic behavior of steel-concrete composite frames and gives good efficiency.

Estimation of material properties of carbon nanotube composite applying multi-scale method (다중스케일 기법을 이용한 카본나노튜브 복합재료의 물성치 계산)

  • Kim J.T.;Hyun S.J.;Kim Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.165-168
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

Influences of porosity distributions on bending and buckling behaviour of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Mohammed A. Al-Osta;Ibrahim Alfaqih;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Salah U. Al-Dulaijan;Saeed Tahir
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.179-193
    • /
    • 2024
  • The bending and buckling effect for carbon nanotube-reinforced composite (CNTRC) beams can be evaluated by developing the theory of third shear deformation (TSDT). This study examines beams supported by viscoelastic foundations, where single-walled carbon nanotubes (SWCNTs) are dispersed and oriented within a polymer matrix. Four patterns of reinforcement are used for the CNTRC beams. The rule of mixtures is assessed for the material properties of CNTRC beams. The effective functionally graded materials (FGM) properties are studied by considering three different uneven distribution types of porosity. The damping coefficient is considered to investigate the viscosity effect on the foundation in addition to Winkler's and Pasternak's parameters. The accuracy of the current theory is inspected with multiple comparison works. Moreover, the effects of different beam parameters on the CNTRC beam bending and buckling over a viscoelastic foundation are discussed. The results demonstrated that the O-beam is the weakest type of CNTRC beam to resist buckling and flexure loads, whereas the X-beam is the strongest. Moreover, it is indicated that the presence of porosity in the beams decreases the stiffness and increases deflection. In comparison, the deflection was reduced in the presence of a viscoelastic foundation.

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.