• Title/Summary/Keyword: Composite Laminates and Vector Decomposition

Search Result 7, Processing Time 0.02 seconds

Characterization of CFRP Laminates′Layups Using Through-Transmitting Ultrasound Waves

  • Im, Kwang-Hee;David K. Hsu;Cho, Young-Tae;Park, Jae-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.292-301
    • /
    • 2002
  • Ultrasound waves interact strongly with the orientation and sequence of the plies in a layup when propagating in the thickness direction of composite laminates. Also the layup orientation greatly influences its properties in a composite laminate. If the layup orientation of a ply is misaligned, it could result in the part being rejected and discarded. Now, most researchers cut a small coupon from the waste edge and use a microscope to optically verify the ply sequences on important parts. This may add a substantial cost to the production since the test is both labor intensive and performed after the part is cured. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore we have developed, reduced, and implemented a novel ply-by-ply vector decomposition model for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. High probability is found, by comparisons between the model and tests, in characterizing cured layups of the laminates by using the proposed method.

Characteristics Evaluation of CFRP Composite Laminates Using a Through-Transmission Method of Ultrasonic Transducers (초음파 트랜스듀셔 투과법을 이용한 CFRP 복합적층판의 특성평가)

  • Im, Kwang-Hee;Na, Sung-Woo;Kang, Tae-Sick;Kim, Sun-Kyun;Kim, Ji-Hyun;Lee, Hyun;Park, Jae-Woung;Sim, Jae-Ki;Yang, In-Young;Hsu, David K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.401-406
    • /
    • 2001
  • When propagating the thickness direction of composite laminates ultrasound waves interacts strongly with the orientation and sequence of the plies in a layup. Also the layup orientation greatly influences its properties in a composite laminate. If one ply of the layup orientation is misaligned, it could result in the part being rejected and discarded. Now, most researchers cut a small coupon from the waste edge and use a microscope to optically verify the ply sequences on important parts. Those may add a substantial cost to the product since the test is both labor hard and performed after the part is cured. A nondestructive technique would be very beneficial, which could be used to test the part after curing and require less time than the optical test. Therefore we have developed, reduced, and implemented a novel ply-by-ply vector decomposition model for composite lam mates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. It is found that a high probability shows between the model and tests developed in characterizing cured layups of the laminates.

  • PDF

Ultrasonic Characterization on Sequences of CFRP Composites Based on Modeling and Motorized System

  • Im, Kwang-Hee;David K. Hsu;Song, Sung-Jin;Park, Je-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • Composites are a material class for which nondestructive material property characterization is as important as flaw detection. Laminates of fiber reinforced composites often possess strong in-plane elastic anisotropy attributable to the specific fiber orientation and layup sequence when waves are propagating in the thickness direction of composite laminates. So the layup orientation greatly influences its properties in a composite laminate. It could result in the part being .ejected and discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore a ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. Also in order to develop these methods into practical inspection tools, motorized system have been developed for different measurement modalities for acquiring ultrasonic signals as a function of in-plane angle. It is found that high probability shows between the model and tests developed in characterizing cured layups of the laminates.

On Evaluation of CFRP Composite Laimates Using Ultrasonic Transducers with Polarization Direetion (초음파 탐촉자의 분극성에 따른 CFRP 복합적층판 평가에 관한 연구)

  • Ra, Seung-Woo;Im, Kwang-Hee;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • This paper shows error in the polarization direction on ultrasonic transducers how sensitive the shear ultrasonic waves are to a little misoriented plies according to the angle variation of shear ultrasonic waves $0{\circ},\;45{\circ}$ and $90{\circ}$. Also, it is shown that shear waves, particularly the transmission mode with the transmitter and receiver perpendicular to cach other, have high sensitivity for detecting anomalies in fiber orientation and ply layup sequence that may occur in the manufacturing of composite laminates. Experimental results are agreed with a modeling solutions which was based on decomposition of shear wave polarization vector as it propagates through the composite laminates. This wave appeared considerably to be sensitive to CFRP composites to thickness direction along in-plane fibers.

A Study on the Inspection of Orthotropy Composite Laminate plates Using Ultrasonics (직교이방성 복합적층판의 초음파 탐사에 관한 연구)

  • 나승우;임광희;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.583-586
    • /
    • 2000
  • This work ethibits how susceptive the shear ultrasonic waves are to a little misoriented plies according to the angle variation of shear ultrasoic waves $0^\circ$ , $45^\circ$ and $90^\circ$. Also, it is shown that shear waves, particularly the transmission mode with the transmitter and receiver perpendicular to each other, have high sensitivity for detecting anomalies in fiber orientation and ply layup sequence that may occur in the manufacturing of composite laminates. Experimental results are agreed with modeling solutions which were based on decomposition of shear wave polarization vector as it propagates through the composite laminates. This wave appeared considerably to be sensitive to CFRP composites to the thickness direction along in-plane fibers.

  • PDF

A Study on method of Using Ultrasonic Transducers With shear wave Polarization Direction (전단파 분극현상을 갖는 초음파 탐촉자 민감도 기법에 관한 연구)

  • 나승우;임광희;송상기;정동화;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.744-747
    • /
    • 2001
  • This paper shows shear wave behavior of CFRP composite laminates as a polar grid form to evaluate vibration pattern of ultrasonic transducers, which gives measured modelling fundamental contents of nondestructive evaluation. Polarized direction can be obtained by using a c-scanner and sensitivity of transducers is founded when using through-transmission method of two transducers. And modelling of vector decomposition is presented based on ply-to-ply method to apply practicable nondestructive evaluation of CFRP laminate lay up. This modelling decomposes the transmission of linearly polarized wave into orthogonal components through each ply of a laminate. It is found that a high provable shows between the model and experimental developed in characterizing layup of CFRP composite laminates.

  • PDF

On Fiber Orientation Characterization of CERP Laminate Layups Using Ultrasonic Azimuthal Scanners

  • Im Kwang-Hee;Hsu, David K.;Sim Jae-Gi;Yang, In-Young;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.566-576
    • /
    • 2003
  • Carbon-fiber reinforced plastics (CFRP) composite laminates often possess strong in-plane elastic anisotropy attributable to the fiber orientation and layup sequence. The layup orientation thus greatly influences its properties in a composite laminate. It could result in the part being rejected or discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and to require less time than the optical test. In this paper, ultrasonic scanners were set out for different measurement modalities for acquiring ultrasonic signals as a function of in-plane azimuthal angle. The motorized scanner was built first for making transmission measurements using a pair of normal-incidence shear wave transducers. Another scanner was then built fer the acousto-ultrasonic configuration using contact transducers. A ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. We have compared the test results with model data. It is found that strong agreement are shown between tests and the model developed in characterizing cured layups of the laminates.