• Title/Summary/Keyword: Composite Honeycomb Core

Search Result 94, Processing Time 0.025 seconds

Failure Characteristics of Carbon/BMI Sandwich Composite Joint under Pull-out Loading (풀아웃 하중을 받는 카본/BMI 샌드위치 복합재 체결부 파손특성 연구)

  • Lee, Gyeong-Chan;Choi, Young-Ho;Lee, Kowan-Woo;Sim, Jae-Hoon;Jung, Young-In
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.132-137
    • /
    • 2017
  • The purpose of this paper is to investigate failure characteristics of Carbon/BMI-Nomex honeycomb sandwich on design parameters. A total of 6 types sandwich specimens were manufactured according to core height, face thickness and density, and environmental condition were applied to evaluate temperature and humidity effects of one of these specimens. The test results show that the core shear buckling loads was commonly observed in all specimens except for the joint with density of $64kg/m^3$. After core shear buckling, however, the joint carried additional loads over the buckling loads and then finally failed in the upper face and lower face at the same time. In the case of specimen having high stiffness, the maximum failure load was low due to interfacial failure of the upper face and core without initial core shear buckling. The ETW1 and ETW2 conditions, which were carried out to evaluate the environmental condition of the sandwich specimen, show an initial failure mode which was significantly different from RTD condition. Also, the ETW2 condition with increased temperature under the same humidity shows that the core shear buckling load was 18% less than ETW1 condition.

A Study on Residual Strength of Damaged Sandwich Composite Structure (샌드위치 복합재 구조의 손상에 의한 잔류 강도 연구)

  • Kong, Chang-Duk;Kong, Hyun-Bum;Kim, Sang-Hoon;Song, Min-Su
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2073-2079
    • /
    • 2008
  • This study aims to investigate the residual strength of sandwich composites with Al honeycomb core and carbon fiber face sheets after the quasi-static indentation damage by the experimental investigation. The 3-point bending test and the edge-wise compressive strength test were used to find the mechanical properties. The quasi-static point load and damaged hole was applied to introduce the simulated damage on the Each damaged specimens were finally assessed by the 3-point bending test and the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the quasi-static indentation.

  • PDF

Investigation on Strength Recovery after Repairing Impact Damaged Aircraft Composite Laminate (항공기 복합재 라미네이트의 충격 손상 부위 유지 보수 후 강도 복원 평가)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Kyung-Sun;Shin, Sang-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.862-868
    • /
    • 2010
  • Development of a small scale aircraft has been carried out for the BASA(Bilateral Aviation Safety Agreement) program in Korea. This aircraft adopted all the composite structures for environmental friendly by low fuel consumption due to its lightness behavior. However the composite structure has s disadvantage which is very weak against impact due to foreign object damages. Therefore the aim of this study is focusing on the damage evaluation and repair techniques of the aircraft composite structure. The damages of composite laminates including the carbon/epoxy UD laminate and the carbon/epoxy fabric face sheets-honeycomb core sandwich laminate were simulated by a drop weight type impact test equipment and the damaged specimen were repaired using the external patch repair method after removing damaged area. The compressive strength test and analysis results after repairing the impact damaged specimens were compared with the compressive strength test and analysis results of undamaged specimens and impact damaged specimens. Finally, the strength recovery capability by repairing were investigated.

Design of a morphing actuated aileron with chiral composite internal structure

  • Airoldi, Alessandro;Quaranta, Giuseppe;Beltramin, Alvise;Sala, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.331-351
    • /
    • 2014
  • The paper presents the development of numerical models referred to a morphing actuated aileron. The structural solution adopted consists of an internal part made of a composite chiral honeycomb that bears a flexible skin with an adequate combination of flexural stiffness and in-plane compliance. The identification of such structural frame makes possible an investigation of different actuation concepts based on diffused and discrete actuators installed in the skin or in the skin-core connection. An efficient approach is presented for the development of aeroelastic condensed models of the aileron, which are used in sensitivity studies and optimization processes. The aerodynamic performances and the energy required to actuate the morphing surface are evaluated and the definition of a general energetic performance index makes also possible a comparison with a rigid aileron. The results show that the morphing system can exploit the fluid-structure interaction in order to reduce the actuation energy and to attain considerable variations in the lift coefficient of the airfoil.

Strength Improvement of Insert Joint for Composite Sandwich Structure (복합재 샌드위치 구조의 인써트 조인트의 강도 향상)

  • Kim, Kwang-Soo;An, Jae-Mo;Jang, Young-Soon;Yi, Yeong-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • In this study, joint strength and failure characteristics were experimentally examined with pull-out and shear specimens in which new designed "high strength insert" was applied. The performance of the new insert was compared with typical insert design. The experimental results showed that the "high strength insert" had the joint strengths of 2.1 times in the pull-out specimens and 2.04 times in the shear specimen compared with typical insert joints. Therefore, the new developed "high strength insert" will be usefully used in the aerospace structure.

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

A Study on the Crashworthiness Evaluation and Performance Improvement of Tilting Train Carbody Structure made of Sandwich Composites (틸팅열차의 샌드위치 복합재 차체 구조물에 대한 충돌안전도 평가 및 향상방안 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Han, Sung-Ho
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2011
  • This paper describes the crashworthiness evaluation and performance improvement of tilting train made of sandwich composites. The applied sandwich composite of carbody structure was composed of aluminum honeycomb core and glass/epoxy & carbon/epoxy laminate composite facesheet. Crashworthiness analysis of tilting train was carried out using explicit finite element analysis code LS-DYNA 3D. The 3D finite element model and 1D equivalent model were applied to save the finite element modeling and calculation time for crash analysis. The crash conditions of tilting train were conducted according to four crash scenarios of the Korean railway safety law. It found that the crashworthiness analysis results were satisfied with the performance requirements except the crash scenario-2. In order to meet the crashworthiness requirements for crash scenario-2, the stiffness reinforcement for the laminate composite cover and metal frames of cabmask structure was proposed. Consequentially, it has satisfied the requirement for crash scenario-2.

Analysis of low-velocity impact on composite sandwich panels using an assumed strain solid element (가정변형률 솔리드 요소를 이용한 복합재 샌드위치 평판의 저속충격 해석)

  • Park, Jung;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo;Lee, Jae-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.44-50
    • /
    • 2002
  • Low-velocity impact on composite sandwich panel has been investigated. Contact force is computed from a proposed modified Hertzian contact law. The Hertzian contact law is constructed by adjusting numerical value of the exponent and reducing the through-the- thickness elastic constant of honeycomb core. The equivalent transverse elastic constant is calculated from the rule of mixture. Nonlinear equation to calculate the contact force is solved by the Newton-Raphson method and time integration is done by the Newmark-beta method. A finite element program for the low-velocity impact analysis is coded by implementing these techniques and an 18-node assumed strain solid element. Behaviors of composite sandwich panels subjected to low-velocity impact are analyzed for various cases with different geometry and lay-ups. It has been found that the present code with the proposed contact law can predict measured contact forces and contact times for most cases within reasonable error bounds.

Spectrum and Equivalent Transient Vibration Analysis of Small Composite Satellite Structure (소형 복합재위성의 스팩트럼 및 과도진동해석)

  • Cho, Hee-Keun;Seo, Jung-Ki;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.586-594
    • /
    • 2009
  • This paper is the study on random, sinusoidal and shock vibration responses for the STSAT-3(science and technology satellite-3) proto-model which is the first small size all-composite satellite in Korea. The structure system of the STSAT-3 forms box type structure by joining several hybrid sandwich panels comprised of honeycomb core and carbon fiber reinforced laminated composite skins on both side. Mode shape, stress, displacement and acceleration responses are obtained on both the frequency domain and time domain by means of a commercial FEA software MSC/NASTRAN. From these analysis results, failure, safety factor and design validity are assessed. These results can be successfully applicable as reference data when a new satellite is developed as well as giving out an excellent criteria in satellite vibration treatment design.

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.