• 제목/요약/키워드: Composite Feature

검색결과 191건 처리시간 0.018초

얼굴인식을 위한 판별분석에 기반한 복합특징 벡터 구성 방법 (Construction of Composite Feature Vector Based on Discriminant Analysis for Face Recognition)

  • 최상일
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.834-842
    • /
    • 2015
  • We propose a method to construct composite feature vector based on discriminant analysis for face recognition. For this, we first extract the holistic- and local-features from whole face images and local images, which consist of the discriminant pixels, by using a discriminant feature extraction method. In order to utilize both advantages of holistic- and local-features, we evaluate the amount of the discriminative information in each feature and then construct a composite feature vector with only the features that contain a large amount of discriminative information. The experimental results for the FERET, CMU-PIE and Yale B databases show that the proposed composite feature vector has improvement of face recognition performance.

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

공정계획의 자동화를 위한 각주형 파트의 특징형상 인식 : 확장된 AAG 접근 방법 (Feature Recognition of Prismatic Parts for Automated Process Planning : An Extended AAG A, pp.oach)

  • 지원철;김민식
    • 지능정보연구
    • /
    • 제2권1호
    • /
    • pp.45-58
    • /
    • 1996
  • This paper describes an a, pp.oach to recognizing composite features of prismatic parts. AAG (Attribute Adjacency Graph) is adopted as the basis of describing basic feature, but it is extended to enhance the expressive power of AAG by adding face type, angles between faces and normal vectors. Our a, pp.oach is called Extended AAG (EAAG). To simplify the recognition procedure, feature classification tree is built using the graph types of EEA and the number of EAD's. Algorithms to find open faces and dimensions of features are exemplified and used in decomposing composite feature. The processing sequence of recognized features is automatically determined during the decomposition process of composite features.

  • PDF

특징형상 인식을 통한 창성적 자동 공정계획 수립 - 복합특징형상 분류를 중심을 - (Generative Process Planning through Feature Recognition)

  • 이현찬;이재현
    • 한국CDE학회논문집
    • /
    • 제3권4호
    • /
    • pp.274-282
    • /
    • 1998
  • A feature is a local shape of a product directly related to the manufacturing process. The feature plays a role of the bridge connecting CAD and CAM. In the process planning for he CAM, information on manufacturing is required. To get the a manufacturing information from CAD dat, we need to recognize features. Once features are recognized, they are used as an input for the process planning. In this paper, we thoroughly investigate the composite features, which are generated by interacting simple features. The simple features in the composite feature usually have precedence relation in terms of process sequence. Based on the reason for the precedence relation, we classify the composite features for the process planning. In addition to the precedence relation, approach direction is used as an input for the process planning. In the process planning, the number of set-up orientations are minimized whole process sequence for the features are generated. We propose a process planning algorithm based on the topological sort and breadth-first search of graphs. The algorithn is verified using sample products.

  • PDF

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

A note on the distance distribution paradigm for Mosaab-metric to process segmented genomes of influenza virus

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • 제18권1호
    • /
    • pp.7.1-7.7
    • /
    • 2020
  • In this paper, we present few technical notes about the distance distribution paradigm for Mosaab-metric using 1, 2, and 3 grams feature extraction techniques to analyze composite data points in high dimensional feature spaces. This technical analysis will help the specialist in bioinformatics and biotechnology to deeply explore the biodiversity of influenza virus genome as a composite data point. Various technical examples are presented in this paper, in addition, the integrated statistical learning pipeline to process segmented genomes of influenza virus is illustrated as sequential-parallel computational pipeline.

조명 변이에 강인한 하이브리드 얼굴 인식 방법 (A Robust Hybrid Method for Face Recognition Under Illumination Variation)

  • 최상일
    • 전자공학회논문지
    • /
    • 제52권10호
    • /
    • pp.129-136
    • /
    • 2015
  • 본 논문에서는 조명 변이에 강인하게 동작 할 수 있는 하이브리드 얼굴 인식 방법을 제안한다. 이를 위해, 서로 다른 특성을 가진 조명 불변 특징 추출 방법으로부터 판별력 있는 특징들을 추출한다. 개별 방법들의 장점들을 효과적으로 활용하기 위해, 판별 거리 척도를 이용하여 각 특징들의 분별력을 측정하여 분별력이 높은 특징들로만 복합 특징을 구성하여 얼굴 인식에 사용한다. Multi-PIE, Yale B, AR, yale database들에 대한 실험 결과, 제안한 방법은 모든 database에 대해 개별 조명 불변 특징 방법들보다 우수한 인식 성능을 보여 주었다.

타격음을 이용한 복합재료 구조물의 비파괴 검사법 개발 (Development of Non-destructive Evaluation Method for Composite Structures using Tapping Sound)

  • 황준석;김승조
    • Composites Research
    • /
    • 제17권1호
    • /
    • pp.1-9
    • /
    • 2004
  • 본 연구에서는 타격음을 이용한 비파괴 검사법을 제안하였다. 제안된 방법(tapping sound analysis)은 건강한 구조물과 손상된 구조물의 타격음의 차이를 분석하여 구조물의 손상 유무를 판단하는 방법이다. 타격음의 직접적인 비교는 비효율적이므로 타격음으로부터 특성을 추출하기 위해 wavelet packet transform에 기반한 특성추출법을 제안하였다. 또한 추출된 특성 자료를 바탕으로 손상의 유무를 판단하는 지표로서 특성 지수를 정의하였다. 제안된 방법의 타당성을 밝히기 위해 실험적인 검증을 수행하였다. 복합재료를 이용하여 건강한 구조물과 손상된 구조물을 제작하고 타격음을 측정하였다. 제안된 손상 판단 기법을 이용한 결과로부터 특성 지수에 의한 손상 판단의 타당성을 밝혔다.

가공시간에 의한 복합특징형상의 가공순서 생성 (Machining Sequence Generation with Machining Times for Composite Features)

  • 서영훈;최후곤
    • 한국CDE학회논문집
    • /
    • 제6권4호
    • /
    • pp.244-253
    • /
    • 2001
  • For more complete process planning, machining sequence determination is critical to attain machining economics. Although many studies have been conducted in recent years, most of them suggests the non-unique machining sequences. When the tool approach directions(TAD) are considered fur a feature, both machining time and number of setups can be reduced. Then, the unique machining sequence can be extracted from alternate(non-unique) sequences by minimizing the idle time between operations within a sequence. This study develops an algorithm to generate the best machining sequence for composite prismatic features in a vertical milling operation. The algorithm contains five steps to produce an unique sequence: a precedence relation matrix(PRM) development, tool approach direction determination, machining time calculation, alternate machining sequence generation, and finally, best machining sequence generation with idle times. As a result, the study shows that the algorithm is effective for a given composite feature and can be applicable fur other prismatic parts.

  • PDF

복합특징과 SVM 분류기를 이용한 필기체 숫자인식 (Handwritten Numeral Recognition using Composite Features and SVM classifier)

  • 박중조;김태웅;김경민
    • 한국정보통신학회논문지
    • /
    • 제14권12호
    • /
    • pp.2761-2768
    • /
    • 2010
  • 본 논문에서는 숫자의 전경특징과 배경특징을 이용하고 SVM 분류기를 사용하여 오프라인 필기체 숫자인식에서 인식률을 향상시키는 방안을 제시한다. 숫자의 전경특징은 숫자의 에지선을 추출한 Kirsch 방향특징과 숫자선 자체를 추출한 projection 방향특징으로 구성되며, 숫자의 배경특징은 숫자의 볼록외피로 부터 추출되는 오목특징이다. 여기서 오목특징은 방향특징에 대해 보완적인 특징으로 작용하여 분류 성능 향상에 기여한다. 인식기로는 RBF 커널을 이용한 SVM 분류기를 사용하고, CENPAMI 숫자특징 데이터베이스를 사용하여 제시된 방법의 성능을 검사하였다. 실험 결과 각기 다른 분류 성능을 갖는 이들 3종의 특징들이 상호 보완적으로 작용하여 인식률 향상에 기여함을 확인할 수 있었으며, 제시된 복합특징에 의해 98.90%의 인식률을 달성하였다.