• Title/Summary/Keyword: Composite Electrode

Search Result 475, Processing Time 0.031 seconds

Electrochemical Properties of $V_2O_5$ Electrodes as a Function of Additon of Carbon for Film Supercapacitor (Film형 Supercapacitor용 $V_2O_5$전극의 Carbon 첨가에 따른 전기화학적 특성)

  • Kim, Myung-San;Kim, Jong-Uk;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.39-41
    • /
    • 2000
  • Carbon is an attractive candidate for use in eletrochemical supercapacitors that depend on charge storage in the electrode/eletorlyte international double layer. Property of an electrical double layer capacitor depend both on the technique used to prepare the electrode and on the current collector structure. The study is to research that $V_2O_5$-carbon (SP270) composite electrode for supercapacitor. The discharge capacitance of $V_2O_5$-SP270 (20wt%) in 1st and 35cyc1e was 14F/g and 8.5F/g at current density of $0.1mA/cm^2$. The discharge process of $V_2O_5$-SP270 (20wt%) composite electrode is larger than that others.

  • PDF

Computational Design of Electrode Networks for Preferentially Aligned Short Fiber Composite Component Fabrication via Dielectrophoresis

  • Srisawadi, Sasitorn;Cormier, Denis R.;Harrysson, Ola L.A.;Modak, Sayantan
    • International Journal of CAD/CAM
    • /
    • v.12 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Finite Element Analysis (FEA) is often used to identify local stress/strain concentrations where a component is likely to fail. In order to reduce the degree of strain concentration, component thickness can be increased in those regions, or a stronger material can be used. In short fiber reinforced composite materials, strength and stiffness can be increased through proper fiber alignment. The field-aided microtailoring (FAiMTa) process is one promising method for doing this. FAiMTa uses principles of dielectrophoresis to preferentially align particles or fibers within a matrix. To achieve the preferred fiber orientation, an interdigitated electrode network must be integrated into the mold halves which can be fabricated by additive manufacturing (AM) processes. However, the process of determining the preferred fiber arrangements and electrode locations can be very challenging. This paper presents algorithms to semi-automate the interdigitated electrode design process. The algorithm has been implemented in the Solidworks CAD system and is demonstrated in this paper.

Fabrication of Electro-active Polymer Actuator Based on Transparent Graphene Electrode

  • Park, Yunjae;Choi, Hyonkwang;Im, Kihong;Kim, Seonpil;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.386.1-386.1
    • /
    • 2014
  • The ionic polymer-metal composite (IPMC), a type of electro-active polymer material, has received enormous interest in various fields such as robotics, medical sensors, artificial muscles because it has many advantages of flexibility, light weight, high displacement, and low voltage activation, compare to traditional mechanical actuators. Mostly noble metal materials such as gold or platinum were used to form the electrode of an IPMC by using electroless plating process. Furthermore, carbon-based materials, which are carbon nanotube (CNT) and reduced graphene-CNT composite, were used to alter the electrode of IPMC. To form the electrode of IPMC, we employ the synthesized graphene on copper foil by chemical vapor deposition method and use the transfer process by using a support of PET/silicone film. The properties of graphene were evaluated by Raman spectroscopy, UV/Vis spectroscopy, and 4-point probe. The structure and surface of IPMC were analyzed via field emission scanning electron microscope. The fabricated IPMC performance such as displacement and operating frequency was measured in underwater.

  • PDF

The effect of introduced method of titania and applied potential on the photoelectrocatalytic properties of CNT/TiO2 electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • In this paper, three types of CNT/$TiO_2$ composite electrodes were prepared with different methods. The changes in XRD patterns showed that the Electrode A contained a mixed phase of anatase and rutile while the Electrode B and Electrode C contained a typical single and clear anatase crystal structure. From SEM micrographs, $TiO_2$ particles were adhered on the surface of the CNT network in the forms of small clusters. The results of chemical elemental analysis indicated that the main elements such as C, O and Ti were existed. The results demonstrated that the efficiency of photoelectrocatalytic (PEC) oxidation for methylene blue (MB) was higher than that of photocatalytic (PC) oxidation. There was a clear enhancement trend of the MB degradation using the prepared CNT/$TiO_2$ composite electrodes with an increase of applied potential. Finally, the prominent PEC activities of the CNT/$TiO_2$ composites could be attributed to combination effects of photo-degradation of $TiO_2$, electron assistant of CNT and function of applied potential.

Fabrication and Electro-photolysis Property of Carbon Nanotubes/Titanium Composite Photocatalysts for Methylene Blue

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1798-1804
    • /
    • 2009
  • In this study, we have studied on improved performance of carbon nanotubes/titanium (CNT/TiO2) structure electrode for methylene blue (MB). The composite electrodes consisting of CNTs and a titanium oxide matrix with phenol resin binder was fabricated with a mixture method. The chemical and morphological structure of CNT/Ti$O_2$ composites were characterized by means of BET surface area, X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis absorption technique, Raman spectroscopy and energy dispersive X-ray (EDX). The electrode showed a remarkably enhanced performance for MB oxidation under UV illumination with or without electro-chemical reaction (ECR). Such a remarkably improved performance of the CNT/Ti$O_2$ structure electrode might be due to the enhanced MB oxidation by electro- and photo-generated electrons and holes in the CNTs and Ti$O_2$ under UV illumination with or without ECR.

Dielectric Insulation Properties of Double Pancake Coil Type HTS Transformer (Double Pancake Coil형 고온초전도 변압기의 전기적 절연 특성)

  • 백승명;정종만;이현수;한철수;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • High temperature superconductor can only be applied against an engineering specofication that has to be determined for each particular application form the design requirements for economic viability and for operation margins in service. However, in order to realize the HTS transformer, it is necessary to establish the high voltage insulation technique in cryogenic temperature. Therefore, the composite insulation of double pancake coil type transformer are described and AC breakdown voltage characteristics of liquid nitrogen(LN$_2$) under HTS pancake coil electrode made by Bi-2223/Ag are studied. The Breakdown of LN$_2$ is dominated electrode shape and distance. The influence of pressure on breakdown voltage is discussed with th different electrode. For the electrical insulation design of turn-to-turn insulation for the HTS transformer, we tested breakdown strength of insulation sheet under varying pressure. And we investigated surface flashover properties of LN$_2$ and complex conition of cryogenic gaseous nitrogen(CGN$_2$) obove a LN$_2$ surface. The surface voltage of GFRP was measured as a function of thickness and electrode distance in LN$_2$ and complex condition of CGN$_2$ above a LN$_2$ surface. this research presented information of electrical insulation design for double pancake coil(DPC) type HTS transformer.

Development of Stretchable PZT/PDMS Nanocomposite Film with CNT Electrode

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.400-403
    • /
    • 2013
  • The piezoelectric composite film of ferroelectric PZT ceramic ($PbZr_xTi_{1-x}O_3$) and polymer (PDMS, Polydimethylsiloxane) was prepared to improve the flexibility of piezoelectric material. The bar coating method was applied to fabricate flexible nanocomposite film with large surface area by low cost process. In the case of using metal electrode on the composite film, although there is no problem by bending process, the electrode is usually broken away from the film by stretching process. However, the well-attached, flexible CNT electrode on PZT/PDMS film improved flexibility, especially stretchability. PZT particles was usually settled down into polymer matrix due to gravity of the weighty particle, so to improve the dispersion of PZT powder in polymer matrix, small amount of additives (CNT powder, Carbon nanotube powder) was physically mixed with the matrix. By stretching the film, an output voltage of PZT(70 wt%)/PDMS with CNT (0.5 wt%) was measured.

Electrochemical Characteristics of DAAQ/CNFs electrode for Supercapacitor (슈퍼커패시터용 DAAQ/CNFs 전극의 전기화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1184-1187
    • /
    • 2003
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. We established Process Parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured CNFs electrodes using controlled solution chemistry. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

Investigation of Transparent Electrodes for Solution-Processed Organic Solar Cells (용액법 기반의 유기태양전지 제작을 위한 투명전극 개발)

  • Lee, Sumin;Kang, Moon Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.115-120
    • /
    • 2021
  • In this study, composite transparent electrodes were fabricated either from a conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) or silver nanowire (AgNW). Three transparent electrodes such as PEDOT:PSS, PEDOT:PSS and AgNW mixture, and AgNW were fabricated. As for a transparent electrode, measured sheet resistance values were 89.6, 60.6 and 28.6 Ω/sq, and the transmittance values were 80.2, 82.0 and 83.8% while surface roughness (Rq) values were 4.1, 8.1, 20.4 nm for PEDOT:PSS, PEDOT:PSS and AgNW mixture, and AgNW, respectively. To verify the overall performance of these composite electrodes, we applied these electrodes to the top electrode of the solution-processed organic solar cells (OSCs). PEDOT:PSS provided the best performance with a fill factor (FF) of 51.2% and a photoconversion efficiency (PCE) of 2.2%, while traditional metal top electrode OSC provided FF of 60.5% and PCE of 3.1%.

Breakdown Characteristics of Insulators for a Resistor Type HTS Fault Current Limiter (저항형 고온초전도 한류기용 절연체의 절연 특성)

  • 백승명;류엔반둥;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.48-52
    • /
    • 2004
  • Breakdown characteristics of insulator-liquid nitrogen ($LN_2$) composite insulation for resistor type High $T_c$/ superconducting fault current limiter (HTSFCL) under ac and impulse voltage in $LN_2$ has been studied using model electrode systems. Electrodes for model electrode systems were made of SUS 304 contacted fiberglass reinforced plastic (FRP) and Au coated sapphire. The breakdown characteristics of model electrode systems were investigated experimentally for FRP thickness ranging from 1 mm to 5 mm. surface distance ranging from 2.5 mm to 7 mm and electrode gap ranging from 1 to 5 mm. The experimental data suggested that the breakdown voltage of model electrode systems in $LN_2$ is highly dependent on the surface distance, electrode gap as well as on the FRP thickness. Also, we had observed discharge traces and puncture due to high-voltage 60-Hz AC stress.