• Title/Summary/Keyword: Composite Container

Search Result 38, Processing Time 0.022 seconds

A Study on the Nonlinear Structural Analysis for Spent Nuclear Fuel Disposal Container and Bentonite Buffer (고준위폐기물 처분장치와 이를 감싸고 있는 벤토나이트 버퍼에 대한 비선형 구조해석)

  • 권영주;최석호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.19-26
    • /
    • 2002
  • In this paper, the nonlinear structural analysis for the composite structure of the spent nuclear fuel disposal container and the 50cm thick bentonite buffer is carried out to predict the collapse of the container while the sudden rock movement of 10cm is applied on the composite structure. This sudden rock movement is anticipated by the earthquake etc. at a deep underground. Horizontal symmetric rock movement is assumed in this structural analysis. Elastoplastic material model is adopted. Drucker-Prager yield criterion is used for the material yield prediction of the bentonite buffer and von-Mises yield criterion is used for the material yield prediction of the container(cast iron insert, copper outer shell and lid and bottom). Analysis results show that even though very large deformations occur beyond the yield point in the bentonite buffer, the container structure still endures elastic small strains and stresses below the yield strength. Hence, the 50cm thick bentonite buffer can protect the container safely against the 10cm sudden rock movement by earthquake etc.. Analysis results also show that bending deformations occur in the container structure due to the shear deformation of the bentonite buffer. The elastoplastic nonlinear structural analysis for the composite structure of the container and the bentonite buffer is performed using the finite element analysis code, NISA.

  • PDF

Strength Safety Evaluation of Composite Pressure Container for Hydrogen Fuel Tanks (수소연료탱크용 복합소재 압력용기에 관한 강도안전성 평가연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.30-34
    • /
    • 2011
  • This paper presents a strength safety evaluation of composite pressure container for hydrogen fuel tanks with a storage capacity of 104 liter and 70MPa pressure. The carbon fiber composite container is manufactured by an aluminum liner of Al6061-T6 and composite multi-layers of hoop winding layer in circumferential direction, $12^{\circ}C$ inclined winding layer and $70^{\circ}C$winding layer in helical direction respectively. The FEM results on the strength safety of composite fuel tanks were evaluated with a criterion of design safety of US DOT-CFFC and KS B ISO 11119-2 codes. The FEM computed results indicate that the proposed design model of 104 liter composite container is safe based on two strength safety codes. But, the computed results of carbon fiber fuel tanks based on US DOT-CFFC code is safer compared with that of KS B ISO 11119-2. Thus the hydrogen gas pressure container of 70MPa may be evaluated and designed by US DOT-CFFC code for more strength safety.

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.

Study on the numerical simulation of bird strike for composite container of external auxiliary fuel tank for rotorcraft (회전익항공기 외부 보조연료탱크용 복합재 컨테이너 조류충돌 수치모사 연구)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.709-713
    • /
    • 2017
  • In urgent situations such as crashes, the integrity of an aircraft's fuel tank is directly related to the survivability of the crew. Thus, an external auxiliary fuel tank should be robust against bird strikes. In this study, a numerical analysis was carried out using impact analysis software to analyze the influence of bird strike on a composite container for an external auxiliary fuel tank. The structure was modeled as a shell element, and the fluid and bird were modeled by the particle method. The behavior of the internal fluid was also examined. The maximum stress, deformation, and strain of the composite container were also calculated.

An Elastoplastic Analysis for Spent Nuclear Fuel Disposal Container and Its Bentonite Buffer: Asymmetric Rock Movement (고준위폐기물 처분장치 및 완충장치에 대한 탄소성해석 : 비대칭 암반력)

  • 권영주;최석호
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.479-486
    • /
    • 2003
  • This paper presents an elastoplastic analysis for spent nuclear fuel disposal container and its 50 cm thick bentonite buffer to predict the collapse of the container while the horizontal asymmetric sudden rock movement of 10 cm is applied on the composite structure. This sudden rock movement is anticipated by the earthquake etc. at a deep underground. Elastoplastic material model is adopted. Drucker-Prager yield criterion is used for the material yield prediction of the bentonite buffer and von-Mises yield criterion is used for the material yield prediction of the container. Analysis results show that even though very large deformations occur beyond the yield point in the bentonite buffer, the container structure still endures elastic small strains and stresses below the yield strength. Hence, the asymmetric 50 cm thick bentonite buffer can protect the container safely against the 10 cm sudden rock movement by earthquake etc.. Analysis results also show that bending deformations occur in the container structure due to the shear deformation of the bentonite buffer. The finite element analysis code, NISA, is used for the analysis.

Development of Korean Container Freight Index Based on Trade Volume (물동량 기반의 한국 정기선 운임지수 개발)

  • Choi, Jung-Suk;Hwang, Doo-Gun
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.3
    • /
    • pp.53-68
    • /
    • 2017
  • The purpose of this study is to develop a new Korean container freight index by applying weights based on the global trade volume. To achieve this, it was decided to determine the conditions such as establishment of routes and regions, weighting of trade volumes which based on prior research and expert advice. Based on this, the individual index and regional index and composite index were calculated, and then reliability and statistical significance of the index was verified through correlation analysis and Granger causality analyses. This study suggest the following findings, through the development of the Korean container freight index. Firstly, Korean freight index reflects the overall market situation and can be used as a benchmark for determining the conditions of each market, consisting of criteria of region and routes. Secondly, it is possible to reflect the market conditions in which actual freight differences exist, since it has developed separate indexes for export and import routes. Finally, The composite index is the only index that reflects not only exports and imports but also 27 individual routes based on Busan, which is the most comprehensive indicator of the korean container freight market.

Design and Manufacturing of Natural Composite Chemical Container Tank Using Resin Flow Simulation

  • Kim, Myungsub;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered-up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.

A Study on Manufacturing of Composite Pressure Vessel for Science Rocket (과학 로켓용 복합재 가압탱크 성형에 관한 연구)

  • 엄문광;최창근;김병하;이영무;공철원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.197-200
    • /
    • 2001
  • A manufacturing process of composite pressure vessel was studied. The vessel was fabricated using the filament winding process. It is utilized as a container of high pressure Helium gas which propels a rocket fuel and an oxidizer. The layup patterns were determined based on the lamination theory. 3-axis controlled filament winding machine was developed to realize the patterns. The vessel was successfully fabricated using the developed machine. And the hydraulic pressure test was performed to measure an applied pressure-strain relations on the composite vessel.

  • PDF