• Title/Summary/Keyword: Composite Alumina

Search Result 262, Processing Time 0.022 seconds

The Effect of Alumina Addition on Microstructure and Mechanical Properties of Plasma-Sparayed Ceria Based Electrolyte Coatings (알루미나 첨가가 플라즈마 용사된 세리아계 전해질체 코팅츠의 미세구조 및 기계적 특성에 미치는 영향)

  • 김장엽;유석원;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.610-618
    • /
    • 1998
  • Alumina were added to ceria based ceramic powders upto 9.7 vol% and composite powders were sprayed by plasma spraying process in order to improve the mechanical properties such as hardness fracture tough-ness and thermal shock resistance. The ceria based coating sprayed without alumina has the typical colum-nar and lamellar structure. Alumina addition has lowered the amount of columnar and lamellar sturcture Added alumina was segreagated in the grain boundary and grain of ceria based crystal accompanied with pore. The maximum value of density and the minimum value of porosity were observed at the sprayed coating with 4.8 vol% alumina. The hardness fracture toughness and thermal shock resistance were increased with alumina addition. The improvement of mechanical properties of plasma sparyed ceria based coatings result-ed from the disapperance of the columnar and lamellar sturcture by addition of alumina.

  • PDF

Electrical Insulation Breakdown Strength in Epoxy/Spherical Alumina Composites for HV Insulation

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2013
  • In order to develop high voltage (HV) insulation materials, epoxy/spherical alumina composites with two different particle sizes (in ${\mu}m$) were prepared and a dynamic mechanical analysis (DMA) and electrical insulation breakdown strength test were carried out in sphere-sphere electrodes and the data were estimated using Weibull statistical analysis. Alumina content varied from 50 to 70 wt%. The electrical insulation breakdown strength for epoxy/alumina (50 wt%) was 44.0 kV/1 mm and this value decreased with increasing alumina content. The effects of insulation thickness and alumina particle size on the insulation breakdown strength were also studied. The insulation thickness varied from 1 mm to 3 mm, and the particle sizes were 7.3 or $40.3{\mu}m$.

Fabrication and Fracture Properties of Alumina Matrix Composites Reinforced with Carbon Nanotubes (Carbon Nanotube로 강화된 알루미나 기지 복합재료의 제조 및 파괴특성)

  • Kim, Sung Wan;Chung, Won Sub;Sohn, Kee-Sun;Son, Chang-Young;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • In this study, alumina matrix composites reinforced with carbon nanotubes (CNTs) were fabricated by ultrasonic dispersion, ball milling, mixing, compaction, and sintering processes, and their relative density, electrical resistance, hardness, flexure strength, and fracture toughness were evaluated. 0~3 vol.% of CNTs were relatively homogeneously dispersed in the composites in spite of the existence of some pores. The three-point bending test results indicated that the flexure strength increased with increasing volume fraction of CNTs, and reached the maximum when the CNT fraction was 1.5 vol.%. The fracture toughness increased as the CNT fraction increased, and the fracture toughness of the composite containing 3 vol.% of CNTs was higher by 40% than that of the monolithic alumina. According to observation of the crack propagation path after the indentation fracture test, a new toughening mechanism of grain interface bridging-induced CNT bridging was suggested to explain the improvement of fracture toughness in the alumina matrix composites reinforced with CNTs.

Joining of $\textrm{ZrO}_2$/Na $\beta$"-Alumina to $\alpha$-Alumina using Aluminoborate Glass Sealant (Aluminoborate계 유리질을 사용한 $\textrm{ZrO}_2$/Na $\beta$"-알루미나 복합재와 $\alpha$-알루미나간의 접합)

  • Park, Sang-Myeon;Choe, Gi-Yong;Park, Jeong-Yong;Kim, Gyeong-Heum
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 1999
  • In this study we investigated the effects of process variables on the bond strength, and its dependency upon the interfacial chemistry when the joined $ZrO_2$ toughened $Na\beta$"-alumina to $\alpha$-alumina using B$_2$$O_3$-$SiO_2$-Al$_2$$O_3$-CaO glass sealant. We observed that bond strength is mainly determined by the strength of the glass, which, in turn, depends on the glass composition established after joining reaction. Joining at $950^{\circ}C$ for 15min yielded the highest average bond strength of 66MPa. Different types of interfacial reaction seem to occur at each interface. After joining at $950^{\circ}C$ for 15min we found that Ca and Si diffuse much deeper(~15$\mu\textrm{m}$) into the $\beta$"-alumina composite than into the $\alpha$-alumina(<1$\mu\textrm{m}$) as a result of ion exchange reaction and more effective grain boundary diffusion. Thermal expansion coefficient of the glass was found to have changed more closely to those of the $\beta$"-alumina composite and $\alpha$-alumina, which put the glass under a slight compressive stress.ressive stress.

  • PDF

Mechanical Behaviour of GFRP Composites according to Alumina Powder Impregnation Ratios in Resin (알루미나 분말 혼합 비율에 따른 GFRP의 기계적 강도 특성)

  • Kang, Dae-Kon;Park, Jai-Hak
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.22-30
    • /
    • 2020
  • Small fishing vessels are manufactured using FRP. Various studies have been conducted to increase the strength of the composite material by mixing alumina powder with resin. Tensile tests and flexural strength tests are conducted to examine the effect of alumina powder on the strength of GFRP. In the current study, resin/alumina composites at different alumina contents (i.e., 0, 1, 5, and 10 vol%) have been prepared. The physical and mechanical properties of the prepared composites have been investigated. From the results, the tensile strength of the specimen with alumina powder mixed in at 10% shows the highest value of 155.66 MPa. The tensile strength of the specimen mixed with alumina powder increases with the amount of alumina powder impregnated. In the flexural strength test, the flexural strength of neat resin without alumina powder has a highest value of 257.7 MPa. The flexural modulus of ALMix-5 has a highest value of 12.06 GPa. Barcol hardness of ALMix-10 has a highest value of 51. We show that alumina powder leads to decreasing cracks on the surface and decreasing length area of delamination.

Effect of Plating Parameters on the Electrodeposition of Ni-alumina Nanocomposite

  • Gyawalia, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.4
    • /
    • pp.165-169
    • /
    • 2010
  • $Ni-Al_2O_3$ nanocomposite coatings were fabricated by conventional electrodeposition technique using nickel sulfamate bath. Effect of plating parameters on electrodeposition of $Ni-Al_2O_3$ nanocomposite were studied. The properties of the nano composite were investigated by using SEM, XRD, and Vicker's microhardness test. The results demonstrated that $Al_2O_3$ incorporation in the composite coatings was found to be increased by increasing stir rate and $Al_2O_3$ content in plating bath. Microhardness of the composite coatings was also increased with increasing content of the nano particles in the plating bath. The surface morphologies of the nanocomposite coatings were found to be varied with varying pH, current densities as well as alumina content in the plating bath.

Room Temperature Na/S Batteries Using a Thick Film of Na β"-Alumina Composite Electrolyte and Gel-Type Sulfur Cathode (후막 Na β"-Alumina 복합 고체 전해질 및 Gel-Type 유황 양극을 활용한 상온형 Na-S 전지의 특성 평가)

  • Lee, Jinsil;Yu, Hakgyoon;Lee, Younki;Kim, Jae-Kwang;Joo, Jong Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.411-417
    • /
    • 2020
  • In this study, we introduce a Na β"-alumina composite thick film as a solid electrolyte, to reduce the resistance of electrolyte for a Na/S battery. An alumina/zirconia composite material was used to enhance the mechanical properties of the electrolyte. A solid electrolyte of about 40 ㎛ thick was successfully fabricated through the conversion and tape-casting methods. In order to investigate the effect of the surface treatment process of the solid electrolyte on the battery performance, the electrolyte was polished by dry and wet processes, respectively, and then the Na/S batteries were prepared for analyzing the battery characteristics. The battery with the dry process performed much better than the battery made with the wet process. As a result, the battery manufactured by the dry process showed excellent performance. Therefore, it is confirmed that the surface treatment process of the solid electrolyte has an important effect on the battery capacity and coulombic efficiency, as well as the interface reaction.

Glass-alumina Composites Prepared by Melt-infiltration: Ⅰ. Effect of Alumina Particle Size (용융침투법으로 제조한 유리-알루미나 복합체: Ⅰ. 알루미나 입도 효과)

  • Lee, Deuk-Yong;Jang, Ju-Woong;Kim, Dae-Joon;Park, Il-Seok;Lee, Jun-Kwang;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.799-805
    • /
    • 2001
  • Two commercial alumina powders having different particle size of $0.5{\mu}m$ and 3${\mu}$m were presintered at 1120$^{\circ}$C for 2h and then lanthanum aluminosilicate glass was infiltrated at 1100$^{\circ}$C for up to 4h to obtain the densified glass-alumina composites. The effect of alumina particle size on packing factor, microstructure, wetting, porosity and pore size, and mechanical properties of the composite was investigated. The optimum mechanical properties and compaction behavior were observed for the 3${\mu}$m alumina particle dispersed composite. The 3${\mu}$m alumina particle size and distribution for he preform were within 0.1 to 48${\mu}$m and bimodal and random orientation. The strength and the fracture toughness of the composite having 3${\mu}$m alumina particles were 519MPa and $4.5MPa{\cdot}m^{1/2}$, respectively.

  • PDF

Mechanical Properties of Alumina-Glass Dental Composites Prepared from Aqueous-Based Tape Casting (수계공정에 의한 알루미나 테이프로 제조한 세라믹 인공치관용 알루미나 유리 복합체의 기계적 물성)

  • 이명현;김대준;이득용;이정훈;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1123-1131
    • /
    • 1999
  • Alumina-glass composites which are considered as the material of the choice for all dental crown was prepared by aqeous-based tape casting and sintering for 2h at 1120$^{\circ}C$ followed by glass infiltration for 2h at 1100$^{\circ}C$ Biaxial strength and fracture toughness of the composites were evaluated to determine the optimum composition of the tape as a function of the amount of constituent such as alumina binder and plasticizer. The strength and the fracture toughness of the alumina tape increased with increasing the contents of alumina and binder. These observations are consistent with in fluence of the constituents on mean alumuna particle distance in tapes suggesting that high strength of the glass infiltrated alumina composites is related to toughening by crack bowing. The biaxial strength and the fracture toughness of the composite containing the optimum constituent composition were 523 MPa and 3.3 MPa$.$1/2 respectively.

  • PDF

Formation of La-$\beta$-Aluminate in $\alpha$-Alumina Matrix and Its Influence on Mechanical Properties (La-$\beta$-Aluminate의 형성이 $\alpha$-Alumina의 기계적 성질에 미치는 영향)

  • 강석원;고재웅;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • Alumina ceramics was reinforced by in-situ formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The powder mixture of which composition is (100-12x)Al2O3+x(La2O3+11Al2O3) was prepared for the formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The amount of La-${\beta}$-aluminate in the matrix was controlled by varing x which is number of moles. The dense composite was produced by sintering at 1600$^{\circ}C$ in air or hot-pressing at 1550$^{\circ}C$ under 30 MPa. Bending strength and fracture toughness were increased, resulting from the grain growth inhibition and the crack deflection and crack bridging mechanism when La-${\beta}$-aluminate was produced in ${\alpha}$-alumina matrix.

  • PDF