• 제목/요약/키워드: Composite

검색결과 21,913건 처리시간 0.038초

대칭 적층한 얇은 고강도 탄소섬유 에폭시 복합재 보의 기계적 동특성 (Dynamic Mechanical Properties of the Symmetric Laminated high Strength Carbon Fiber Epoxy Composite Thin Beams)

  • 정광섭;이대길;곽윤근
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2123-2138
    • /
    • 1994
  • A study on the dynamic mechanical properties of the high strength carbon fiber epoxy composite beam was carried out. The macromechanical model was used for the theoretical analysis of the symmetric laminated composite beam. The anisotropic plate theory and Bernoulli-Euler beam theory were used to predict the effective flexural elastic modulus and the specific damping capacity of laminated composite beam. The free flexural vibration and torsional vibration tests were carried out to determine the specific damping capacities of the unidirectional laminated composite beam. The vibration tests were performed in a vacuum chamber with laser vibrometer system and electromagnetic hammer to obtain accurate experimental data. From the computational and experimental results, it was found that the theoretical values with the macromechanical analysis and the experimental data of symmetric laminated composite beam were in good agreement.

두꺼운 복합재료 채널빔의 굽힘 및 비틀림 거동 (Bending and Torsional Behaviors of Thick Composite Channel Beam)

  • 박미정;최용진;전흥재;변준형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.480-485
    • /
    • 2004
  • The applications of composite materials have increased over the past few decades in a variety of structures that require high ratio of stiffness and strength to weight ratios. Recently the thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results.

  • PDF

SPS 공정 변수의 최적화에 의한 Pure Cu와 Cu-3vol%CNT composite의 미세구조와 소재특성 (Materials Characterization and the Microstructure of Pure Cu and Cu-3vol%CNT Composite Fabricated From Optimization of SPS Processing Variables)

  • 이희창;김혜성
    • 열처리공학회지
    • /
    • 제33권4호
    • /
    • pp.185-192
    • /
    • 2020
  • In this study, materials characterization of pure copper and copper based carbon nano-tube composite prepared by powder metallurgy method were investigated. Prior to evaluate materials characterization, spark plasma sintering processing variables such as sintering temperature, pressure, thickness and diameter of compacts was optimized to ensure the microstructure and materials property of pure Cu and Cu-CNT composite. In addition, corrosion behavior of Cu-based CNT composite produced by powder sintering method was investigated. It was confirmed from this study that the corroded surfaces of the composite shows less dissolution compared with pure copper in 3.5 wt% NaCl solution. The measured corrosion current density (Icorr) indicates improved corrosion property of Cu based composite containing small additions of CNTs in chloride containing media. Micro-galvanic activity between Cu and CNT was not observed in given sintering condition.

두 열적 단순계로 구성된 복합계의 열역학 (Thermodynamics of a composite system composed of two simple thermal systems)

  • 정평석;김수연
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.275-284
    • /
    • 1997
  • Thermodynamic behavior of a composite system which is composed of two simple thermal subsystems with constant heat capacities is analyzed, and several thermodynamic phenomena are investigated. The changes of the states and the potential work of the composite system are shown as the interaction between the subsystems in the composite system. The potential work is defined as the possible maximum available work from the composite system, and it is a thermodynamic property of the composite system. The decrease of the potential work is the same as the available work output from the composite system in reversible processes. The dissipation of available work is directly connected to the generation of entropy. The concepts of exergy and internal energy can be explained as a special case of the potential work.

원공을 갖는 복합적층판 및 혼합적층판의 좌굴 및 진동해석 (Buckling and Vibration Analysis of Laminated Composite Plate and Hybrid Composite Plate with a Hole.)

  • 구경민;홍도관;김동영;안찬우;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.812-815
    • /
    • 2002
  • This paper deals with the buckling and vibration analysis of plate with a hole. We knew that in this paper, as aspect ratio rises in design parameter, the buckling strength and the natural frequency of laminated composite plate decrease and as diameter of hole for width of plate rises, the buckling strength decrease but the natural frequency increase. Also this paper compared the CFRP laminated composit plate with the hybrid composite plate, and proposed that the hybrid composite plate is stronger than the CFRP composite plate.

  • PDF

Review of Design Flexural Strengths of Steel-Concrete Composite Beams for Building Structures

  • Chung, Lan;Lim, Jong-Jin;Hwang, Hyeon-Jong;Eom, Tae-Sung
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.109-121
    • /
    • 2016
  • Recently, as the use of high-performance materials and complex composite methods has increased, the need for advanced design specifications for steel-concrete composite structures has grown. In this study, various design provisions for ultimate flexural strengths of composite beams were reviewed. Design provisions reviewed included the load and resistance factor design method of AISC 360-10 and the partial factor methods of KSSC-KCI, Eurocode 4 and JSCE 2009. The design moment strengths of composite beams were calculated according to each design specification and the variation of the calculated strengths with design variables was investigated. Furthermore, the relationships between the deformation capacity and resistance factor for flexure were examined quantitatively. Results showed that the design strength and resistance factor for flexure of composite beams were substantially affected by the design formats and variables.

복합재료 원통쉘의 진동, 좌굴강도, 충격강도 특성 및 그의 설계최적화에 관한 연구 (A Study on the Design Optimization of Composite cylindrical shells with Vibration, Buckling Strength and Impact Strength Characteristics)

  • 이영신;전병희;오재문
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.48-69
    • /
    • 1997
  • The use of advanced composite materials in many engineering structures has steadily increased during the last decade. Advanced composite materials allow the design engineer to tailor the directional stiffness and the strength of materials as required for the structures. Design variables to the design engineer include multiple material systems. ply orientation, ply thickness, stacking sequence and boundary conditions, in addition to overall structural design parameters. Since the vibration and impact strength of composite cylindrical shell is an important consideration for composite structures design, the reliable prediction method and design methodology should be required. In this study, the optimum design of composite cylindrical shell for maximum natural frequency, buckling strength and impact strength are developed by analytic and numerical method. The effect of parameters such as the various composite material orthotropic properties (CFRP, GFRP, KFRP, Al-CFRP hybrid), the stacking sequences, the shell thickness, and the boundary conditions on structural characteristics are studied extensively.

  • PDF

Active vibration control of smart composite structures in hygrothermal environment

  • Mahato, P.K.;Maiti, D.K.
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.127-138
    • /
    • 2012
  • The composite materials may be exposed to environmental (thermal or hygral or both) condition during their service life. The effect of environmental condition is usually adverse from the point of view of design of composite structures. In the present research study the effect of hygrothermal condition on the design of laminated composite structures is investigated. The active fiber composite (AFC) which may be utilized as actuator or sensor is considered in the present analysis. The sensor layer is used to sense the level of response of the composite structures. The sensed voltage is fed back to the actuator through the controller. In this study both displacement and velocity feedback controllers are employed to reduce the response of the composite laminate within acceptable limit. The Newmark direct time integration scheme is employed along with modal superposition method to improve the computational efficiency. It is observed from the numerical study that the laminated composite structures become weak in the presence of hygrothermal load. The response of the structure can be brought to the acceptable level once the AFC layer is activated through the feedback loop.

Experimental research on sagging bending resistance of steel sheeting-styrofoam-concrete composite sandwich slabs

  • Cao, P.Z.;Lu, Y.F.;Wu, Kai
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.425-438
    • /
    • 2013
  • A new-styrofoam-concrete composite sandwich slab with function of heat insulation is designed. Four full-scale simply supported composite sandwich slabs with different shear connectors are tested. Parameters under study are the thickness of the concrete, the height of profiled steel sheeting, the influence of shear connectors including the steel bars and self-drilling screws. Experimental results showing that four specimens mainly failed in bending failure mode; the shear connectors can limit the longitudinal slippery between the steel profiled sheeting and the concrete effectively and thus guarantee the good composite action and cooperative behavior of two materials. The ultimate sagging bending resistance can be determined based on plastic theory. This new composite sandwich slab has high sagging bending resistance and good ductility. Additionally, these test results help the design and application of this new type of composite sandwich slab.

Studies into a high performance composite connection for high-rise buildings

  • Lou, G.B.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.789-809
    • /
    • 2015
  • This paper presents experimental and numerical studies into the structural behavior of a high performance corbel type composite connection adopted in Raffles City of Hangzhou, China. Physical tests under both monotonic and quasi-static cyclic loads were conducted to investigate the load carrying capacities and deformation characteristics of this new type of composite connection. A variety of structural responses are examined in detail, including load-deformation characteristics, the development of sectional direct and shear strains, and the history of cumulative plastic deformation and energy. A three-dimensional finite element model built up with solid elements was also proposed for the verification against test results. The studies demonstrate the high rigidity, strength and rotation capacities of the corbel type composite connections, and give detailed structural understanding for engineering design and practice. Structural engineers are encouraged to adopt the proposed corbel type composite connections in mega high-rise buildings to achieve an economical and buildable and architectural friendly engineering solution.