• Title/Summary/Keyword: Component Scale

Search Result 1,043, Processing Time 0.03 seconds

Earthquake Simulation Tests of A 1:5 Scale Gravity Load Designed 3-Story Reinforced Concrete Frame (중력하중 설계된 1:5 축소 3층 철근콘크리트 골조의 지진모의실험)

  • 이한선;우성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.241-252
    • /
    • 1998
  • The objective of the research stated herein is to observe the actual responses of a low-rise nonseismic moment-resisting reinforced concrete frame subjected to varied levels of earthquake ground motions. First, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used and the model was manufactured according to the similitude law. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelations (PGAs) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The lateral accelerations and displacements at each story and local deformations at the critical reginos of the structure were measured. The base shear was measured by using self-made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the change in the natural period and damping ratio of the model. The test data on the global and local behaviors are interpreted. The model showed the linear elastic behavior under the Taft N21E motion with the PGA if 0.12g, which represents the design earthquake in Korea. The maximum base shear was 1.8tf, approximately 4.7 times the design base shear. The model revealed fairly good resistance to the higher level of earthquake simulation tests. The main components of its resistance to the high level of earthquakes appeared to be 1) the high overstrength, 2) the elongation of the fundamental period, and 3) the minor energy dissipation by inelastic deformations. The drifts of the model under these tests were approximately within the allowable limit.

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.

Component Analysis for Constructing an Emotion Ontology (감정 온톨로지의 구축을 위한 구성요소 분석)

  • Yoon, Ae-Sun;Kwon, Hyuk-Chul
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.157-175
    • /
    • 2010
  • Understanding dialogue participant's emotion is important as well as decoding the explicit message in human communication. It is well known that non-verbal elements are more suitable for conveying speaker's emotions than verbal elements. Written texts, however, contain a variety of linguistic units that express emotions. This study aims at analyzing components for constructing an emotion ontology, that provides us with numerous applications in Human Language Technology. A majority of the previous work in text-based emotion processing focused on the classification of emotions, the construction of a dictionary describing emotion, and the retrieval of those lexica in texts through keyword spotting and/or syntactic parsing techniques. The retrieved or computed emotions based on that process did not show good results in terms of accuracy. Thus, more sophisticate components analysis is proposed and the linguistic factors are introduced in this study. (1) 5 linguistic types of emotion expressions are differentiated in terms of target (verbal/non-verbal) and the method (expressive/descriptive/iconic). The correlations among them as well as their correlation with the non-verbal expressive type are also determined. This characteristic is expected to guarantees more adaptability to our ontology in multi-modal environments. (2) As emotion-related components, this study proposes 24 emotion types, the 5-scale intensity (-2~+2), and the 3-scale polarity (positive/negative/neutral) which can describe a variety of emotions in more detail and in standardized way. (3) We introduce verbal expression-related components, such as 'experiencer', 'description target', 'description method' and 'linguistic features', which can classify and tag appropriately verbal expressions of emotions. (4) Adopting the linguistic tag sets proposed by ISO and TEI and providing the mapping table between our classification of emotions and Plutchik's, our ontology can be easily employed for multilingual processing.

  • PDF

Effects of Pig Manure Application on Nitrogen Uptake, Yield and Active Components of Chrysanthemum boreale M. (돈분퇴비 시용이 산국의 질소흡수 및 수량과 유호성분에 미치는 영향)

  • Lee, Kyung-Dong;Yang, Min-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.5
    • /
    • pp.371-376
    • /
    • 2003
  • To develop an efficient cultivation system to increase the productivity and the high quality of Chrysanthemum boreale M., the effects of pig manure (PM) application on the yield and the effective component were investigated in the pot scale (1/2000a scale). PM applied at the equivalent of six rates (with rate of 0, 2000, 4000, 6000, 8000, and 12000 kg $10a^{-1}$). Maximum plant biomass yield was achieved at 9510 kg $10a^{-1}$ and at 9940 kg $10a^{-1}$ for flower biomass. Nitrogen recovery efficiency was more than 42% for all nitrogen treatments and reached 66.6% at 4000 kg $10a^{-1}$. Proline $(7.4{\sim}9.2\;g\;kg^{-1})$ was the most abundant amino acid in the flower of C. boreale M. and the contents of amino acids increased with increasing PM application rate. Contents of cumambrin A. a sesquiterpene compound known to reduce blood-pressure, decreased with increasing PM application. The highly negative correlation was found ($R^2$ = -0.723, P<0.01) between content of cumambrin A and PM application. However, the amount of cumambrin A in flowers increased as PM rate increased, because of increasing flower yield. In conclusion, PM fertilization increases yields and enhances overall quality.

Face recognition rate comparison with distance change using embedded data in stereo images (스테레오 영상에서 임베디드 데이터를 이용한 거리에 따른 얼굴인식률 비교)

  • 박장한;남궁재찬
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.6
    • /
    • pp.81-89
    • /
    • 2004
  • In this paper, we compare face recognition rate by PCA algorithm using distance change and embedded data being input left side and right side image in stereo images. The proposed method detects face region from RGB color space to YCbCr color space. Also, The extracted face image's scale up/down according to distance change and extracts more robust face region. The proposed method through an experiment could establish standard distance (100cm) in distance about 30∼200cm, and get 99.05% (100cm) as an average recognition result by scale change. The definition of super state is specification region in normalized size (92${\times}$112), and the embedded data extracts the inner factor of defined super state, achieved face recognition through PCA algorithm. The orignal images can receive specification data in limited image's size (92${\times}$112) because embedded data to do learning not that do all learning, in image of 92${\times}$112 size averagely 99.05%, shows face recognition rate of test 1 99.05%, test 2 98.93%, test 3 98.54%, test 4 97.85%. Therefore, the proposed method through an experiment showed that if apply distance change rate could get high recognition rate, and the processing speed improved as well as reduce face information.

Investigation on Combustion Characteristics of Sewage Sludge using Pilot-scale Bubbling Fluidized Bed Reactor (파일럿 규모 기포 유동층 반응기를 이용한 하수 슬러지 연소 특성 분석)

  • Kim, Donghee;Huh, Kang Y.;Ahn, Hyungjun;Lee, Youngjae
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.331-342
    • /
    • 2017
  • To estimate the combustion characteristics of sewage sludge and wood pellet, thermogravimetric analysis (TGA) was conducted. As TGA results, combustion characteristics of sewage sludge was worse than wood pellet. In ash fusion temperature (AFT) analysis, slagging tendency of sewage sludge is very high compared to wood pellet. And also, the bubbling fluidized bed reactor with a inner diameter 400 mm and a height of 4300 mm was used for experimental study of combustion characteristics fueled by sewage sludge and wood pellet. The facility consists of a fluidized bed reactor, preheater, screw feeder, cyclone, ash capture equipment and gas analyzer. The thermal input of sewage sludge cases were $54.5{\sim}96.5kW_{th}$, in case of wood pellet experiment, it was $96.1kW_{th}$. As experiment results, the $NO_x$ emission of sewage sludge was averagely about 10 times the $NO_x$ emission of wood pellet. And also CO emission of sewage sludge is about 3.5 times of wood pellet. Lastly as a result of analysis of captured ash in cyclone, the combustion efficiency of all cases were over 99%, but the potential for slagging/fouling was high at all cases by component analysis of ash.

Analysis of Streetscape Image in Cultural District Using Structural Equation Model (구조방정식을 이용한 문화예술의 거리의 가로경관 이미지 분석)

  • Kim, Myung Soo
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.137-147
    • /
    • 2014
  • PURPOSES : Daejeon is basically divided into an old downtown and a new downtown, and the recent relocation of the Chungcheongnam-do Provincial Government of Republic of Korea from the old downtown and the opening of governmental buildings in the new downtown as well have made this new downtown only densely populated with industrial and business facilities. Such changes in the downtowns have promoted the conditions of the new downtown while, consequently, dragging down the old downtown. Out of concern for those unbalanced developments of the two downtowns, Daejeon is now carrying out several city projects to revive the old downtown. In the light of that, as a part of the project to promote the old downtown, this study aims to conduct an evaluation on landscape of the culture and arts street in Daeheungdong which was built upon those ideas of a theme street project by Daejeon. METHODS : Based on the findings from the questionnaire not only on the components that would design the streetscape of the culture and arts street but also on the public satisfaction with the streetscape, the study defined how those changes in the components affect emotional factors of the pedestrians. In order to achieve the research goal, the study made changes in D/H ratio of the street structural components as well as the roadside trees. In terms of the questionnaire method, the study used the SD scale, and proceeded with its investigation through the frequency analysis, the principal component analysis (the factor analysis) and the structural equation model. RESULTS : According to the results from the factor analysis and the regression analysis, of those three factors, such as the openness, the comfortable sensation and the safety, the openness followed by the comfortable sensation and the safety was determined to have the most positive influence on the total satisfaction. The structural model analysis reported that the D/H and the structural components of the roadside trees and planting have a positive effect on the emotional image, and this emotional image also appeared to be positively related to the total satisfaction. CONCLUSIONS : This study looked into how the changes in the street structural components of the culture and arts street in Daeheungdong would affect the satisfaction with the streetscape, and finally confirmed that the D/H and the planting are what would have a positive effect on this satisfaction. What has been learned from this study will be the basic data to figure out how to promote and improve the culture and arts street in Daeheung-dong as this data will also help designing and developing of those specialized streets in other regions.

Temporal variation of wintering bird population and environmental factors in Donglim reservoir (동림저수지에서 월동조류 개체군의 시계열적 변화와 환경 요인)

  • Park, Jongchul;Kim, Woo-Yuel
    • Journal of Wetlands Research
    • /
    • v.19 no.2
    • /
    • pp.223-229
    • /
    • 2017
  • This study analyzed the relationship between environmental factors and the temporal changes of the bird populations during the every January from 1999 to 2016 (18 years) in Donglim reservoir. 'Winter Waterbird Census of Korea' data by National Institute of Biological Resources were used for the bird population data, and principal component analysis and cluster analysis were used to analyze the changes of annual population. The average temperature of January and the average storage rate of the reservoir were used as environmental factors. According to the results of the study, the population changes in the study area can be explained by the increase and decrease of two water bird groups and a mountain bird group. The average temperature of the years when the population of water bird groups increased was more than $1.4^{\circ}C$ in comparison with the year when mountain birds increased. On the other hand, the influence of the water content was not clear. The visiting of Baikal Teal affected by temperature was a factor affecting the other group of water bird and a mountain bird group. The results of this study suggest that the temperature change affects the global spatial distribution of birds and the migration of large population species such as Baikal Teal affects species composition and populations of birds at local scale. Therefore, understanding of environmental changes at large scale and spatial distribution of species and flock contributes to understand the temporal variation of the bird population at regional or local scales.

Statistical Analysis of Projection-Based Face Recognition Algorithms (투사에 기초한 얼굴 인식 알고리즘들의 통계적 분석)

  • 문현준;백순화;전병민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.717-725
    • /
    • 2000
  • Within the last several years, there has been a large number of algorithms developed for face recognition. The majority of these algorithms have been view- and projection-based algorithms. Our definition of projection is not restricted to projecting the image onto an orthogonal basis the definition is expansive and includes a general class of linear transformation of the image pixel values. The class includes correlation, principal component analysis, clustering, gray scale projection, and matching pursuit filters. In this paper, we perform a detailed analysis of this class of algorithms by evaluating them on the FERET database of facial images. In our experiments, a projection-based algorithms consists of three steps. The first step is done off-line and determines the new basis for the images. The bases is either set by the algorithm designer or is learned from a training set. The last two steps are on-line and perform the recognition. The second step projects an image onto the new basis and the third step recognizes a face in an with a nearest neighbor classifier. The classification is performed in the projection space. Most evaluation methods report algorithm performance on a single gallery. This does not fully capture algorithm performance. In our study, we construct set of independent galleries. This allows us to see how individual algorithm performance varies over different galleries. In addition, we report on the relative performance of the algorithms over the different galleries.

  • PDF