• Title/Summary/Keyword: Component Map

Search Result 370, Processing Time 0.021 seconds

Modeling of Suspended Solids and Sea Surface Salinity in Hong Kong using Aqua/MODIS Satellite Images

  • Wong, Man-Sing;Lee, Kwon-Ho;Kim, Young-Joon;Nichol, Janet Elizabeth;Li, Zhangqing;Emerson, Nick
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.161-169
    • /
    • 2007
  • A study was conducted in the Hong Kong with the aim of deriving an algorithm for the retrieval of suspended sediment (SS) and sea surface salinity (SSS) concentrations from Aqua/MODIS level 1B reflectance data with 250m and 500m spatial resolutions. 'In-situ' measurements of SS and SSS were also compared with coincident MODIS spectral reflectance measurements over the ocean surface. This is the first study of SSS modeling in Southeast Asia using earth observation satellite images. Three analysis techniques such as multiple regression, linear regression, and principal component analysis (PCA) were performed on the MODIS data and the 'in-situ' measurement datasets of the SS and SSS. Correlation coefficients by each analysis method shows that the best correlation results are multiple regression from the 500m spatial resolution MODIS images, $R^2$= 0.82 for SS and $R^2$ = 0.81 for SSS. The Root Mean Square Error (RMSE) between satellite and 'in-situ' data are 0.92mg/L for SS and 1.63psu for SSS, respectively. These suggest that 500m spatial resolution MODIS data are suitable for water quality modeling in the study area. Furthermore, the application of these models to MODIS images of the Hong Kong and Pearl River Delta (PRO) Region are able to accurately reproduce the spatial distribution map of the high turbidity with realistic SS concentrations.

Stability evaluation model for loess deposits based on PCA-PNN

  • Li, Guangkun;Su, Maoxin;Xue, Yiguo;Song, Qian;Qiu, Daohong;Fu, Kang;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.551-560
    • /
    • 2021
  • Due to the low strength and high compressibility characteristics, the loess deposits tunnels are prone to large deformations and collapse. An accurate stability evaluation for loess deposits is of considerable significance in deformation control and safety work during tunnel construction. 37 groups of representative data based on real loess deposits cases were adopted to establish the stability evaluation model for the tunnel project in Yan'an, China. Physical and mechanical indices, including water content, cohesion, internal friction angle, elastic modulus, and poisson ratio are selected as index system on the stability level of loess. The data set is randomly divided into 80% as the training set and 20% as the test set. Firstly, principal component analysis (PCA) is used to convert the five index system to three linearly independent principal components X1, X2 and X3. Then, the principal components were used as input vectors for probabilistic neural network (PNN) to map the nonlinear relationship between the index system and stability level of loess. Furthermore, Leave-One-Out cross validation was applied for the training set to find the suitable smoothing factor. At last, the established model with the target smoothing factor 0.04 was applied for the test set, and a 100% prediction accuracy rate was obtained. This intelligent classification method for loess deposits can be easily conducted, which has wide potential applications in evaluating loess deposits.

Numerical Verification of HWAW Method in the Near Field (근거리장에서 HWAW 기법의 수치해석적 검증)

  • Bang, Eun-Seok;Park, Hyung-Choon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.5-17
    • /
    • 2007
  • Various field setup and filtering criteria have been suggested to avoid the near field effects in surface wave methods. Unlike other surface wave methods HWAW method uses the near field component positively. It is possible by using maximum energy point based on time-frequency map and inversion method to consider receiver locations from the source point and body wave component. To verify the HWAW method in the near field numerical study was performed and the wave propagation in the stratified soil media was simulated due to a surface point load. All of five representative soil models were used. The experimental dispersion curves, determined by HWAW method at the various receiver distances in the region of near field, all coincided well with the theoretical dispersion curves determined by 3D forward modeling (Kausel's method). Consequently, it was considered that the HWAW method can provide reliable $V_s$ profiles effectively in the near field.

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.

Driver Assistance System for Integration Interpretation of Driver's Gaze and Selective Attention Model (운전자 시선 및 선택적 주의 집중 모델 통합 해석을 통한 운전자 보조 시스템)

  • Kim, Jihun;Jo, Hyunrae;Jang, Giljin;Lee, Minho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.115-122
    • /
    • 2016
  • This paper proposes a system to detect driver's cognitive state by internal and external information of vehicle. The proposed system can measure driver's eye gaze. This is done by concept of information delivery and mutual information measure. For this study, we set up two web-cameras at vehicles to obtain visual information of the driver and front of the vehicle. We propose Gestalt principle based selective attention model to define information quantity of road scene. The saliency map based on gestalt principle is prominently represented by stimulus such as traffic signals. The proposed system assumes driver's cognitive resource allocation on the front scene by gaze analysis and head pose direction information. Then we use several feature algorithms for detecting driver's characteristics in real time. Modified census transform (MCT) based Adaboost is used to detect driver's face and its component whereas POSIT algorithms are used for eye detection and 3D head pose estimation. Experimental results show that the proposed system works well in real environment and confirm its usability.

Practical Investigation for Internet Airborne Video Map Focused on Vector Shaped Objects (벡터형 공간객체 중심의 인터넷 원격 동영상 지도 서비스에 대한 실증적 고찰)

  • Um, Jung-Sup;Lee, Bo-Mi
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.46-64
    • /
    • 2003
  • The vector shaped object is generally very long (hundreds or thousands of kilometers) and very narrow (10-100 meters). Image mapping techniques and tools for these objects should be totally different from the traditional area-based targets. Acknowledging these unique characteristics of the vector shaped object, a motion picture mapping system has been developed by combining internet GIS technology with airborne video. In particular, integration between airborne video and digital maps took advantage of each component, and enabled the landscape structure to be visualized, interacted with and deployed all on the Web. The motion picture maps provided a completely new means for disseminating information for area-wide landscape in a visual and interactive manner to the general public while digital map with location information revealed successfully the major parameters that influence an area-wide spatial structure in the study area. The remote video approach breaks down the usual concept of image mapping in a conventional cartography. As a result, the research findings have established the new concept of 'internet airborne video mapping for vector shaped object', proposed as an initial aim of this paper. It would playa crucial role in improving the quality of public information service if the mapping system is operationally introduced into the Government since the highly user-friendly moving picture provides a completely new means for disseminating spatia) information for vector shaped object.

  • PDF

Landslide Risk Assessment Using HyGIS-Landslide (HyGIS-Landslide를 이용한 산사태 발생 위험도 평가)

  • Park, Jung-Sool;Kim, Kyung-Tak;Choi, Yun-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.119-132
    • /
    • 2012
  • Recently, forest soil sediment disasters resulting from locally concentrated heavy rainfall have been occurring frequently in steep slope areas. The importance of landslide hazard map is emerging to analyze landslide vulnerable areas. This study was carried out to develop HyGIS-Landslide based on Hydro Geographic Information System in order to analyze forest soil sediment disaster in the mountainous river basin. HyGIS-Landslide is one of HyGIS components designed by considering the landslide hazard criteria of Korea Forest Service. It could show the distribution of landslide hazard areas after calculating the spatial data. In this system, the user could reset the weight of hazard criteria to reflect the regional characteristics of the landslide area. This component provided user interface that could make the latest spatial data available in the area of interest. HyGIS-Landslide could be applied to the surveyor's compensation score and it was possible to reflect the landslide risk exactly through it. Also, it could be used in topographic analysis techniques providing spatial analysis and making topographical parameters in HyGIS. Finally the accuracy could be acquired by calculating the landslide hazard grade map and landslide mapping data. This study applied HyGIS-Landslide at the Gangwon-do province sample site. As a result, HyGIS-Landslide could be applied to a decision support system searching for mountainous disaster risk region; it could be classified more effectively by re-weighting the landslide hazard criteria.

Development of Pine Wilt Disease (Bursaphelenchus Xylophilus) Prevention System (소나무재선충병 방제관제시스템 개발에 관한 연구)

  • Seo, Bong-Sang;Jeon, Hyeong-Seob;Kim, Jun-Beom;Cho, Gi-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.283-287
    • /
    • 2007
  • Pine Wilt Disease (Bursaphelenchus Xylophilus) has been attacked since 1988, then it becomes very serious problem of the all over the country. Government has been invested a lot of money to prevent but it is hard to survey the damaged area and ineffectively control the process of prevention. Therefore, this study is focused on development of Pine Wilt Disease (Bursaphelenchus Xylophilus) Prevention System using GIS and GPS through constructiong database of digital map, satellite imagery and attribute data and development component for desktop PC, internet and mobile system to realtime data transmission between project manager and field worker. Especially, we developed the mobile system that can transmit field conditions in realtime using GPS, GIS and CCD camera, the telecommunication control server that transmit received field condition data to web connecting module and system manager, the web system for end user to notify prevention details, the control system lot manager to recognize filed conditions and to control field workers and the wireless telecommunication module to connect in realtime between field and control center.

  • PDF

Quasi real-time post-earthquake damage assessment of lifeline systems based on available intensity measure maps

  • Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.873-889
    • /
    • 2015
  • In civil engineering, probabilistic seismic risk assessment is used to predict the economic damage to a lifeline system of possible future earthquakes. The results are used to plan mitigation measures and to strengthen the structures where necessary. Instead, after an earthquake public authorities need mathematical models that compute: the damage caused by the earthquake to the individual vulnerable components and links, and the global behavior of the lifeline system. In this study, a framework that was developed and used for prediction purpose is modified to assess the consequences of an earthquake in quasi real-time after such earthquake happened. This is possible because nowadays entire seismic regions are instrumented with tight networks of strong motion stations, which provide and broadcast accurate intensity measure maps of the event to the public within minutes. The framework uses the broadcasted map and calculates the damage to the lifeline system and its component in quasi real-time. The results give the authorities the most likely status of the system. This helps emergency personnel to deal with the damage and to prioritize visual inspections and repairs. A highway transportation network is used as a test bed but any lifeline system can be analyzed.

IMAGING NON-THERMAL X-RAY EMISSION FROM GALAXY CLUSTERS: RESULTS AND IMPLICATIONS

  • HENRIKSEN MARK;HUDSON DANNY
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.299-305
    • /
    • 2004
  • We find evidence of a hard X-ray excess above the thermal emission in two cool clusters (Abell 1750 and IC 1262) and a soft excess in two hot clusters (Abell 754 and Abell 2163). Our modeling shows that the excess components in Abell 1750, IC 1262, and Abell 2163 are best fit by a steep power law indicative of a significant non-thermal component. In the case of Abell 754, the excess emission is thermal, 1 ke V emission. We analyze the dynamical state of each cluster and find evidence of an ongoing or recent merger in all four clusters. In the case of Abell 2163, the detected, steep spectrum, non-thermal X-ray emission is shown to be associated with the weak merger shock seen in the temperature map. However, this shock is not able to produce the flatter spectrum radio halo which we attribute to post-shock turbulence. In Abell 1750 and IC 1262, the shocked gas appears to be spatially correlated with non-thermal emission suggesting cosmic-ray acceleration at the shock front.