• Title/Summary/Keyword: Compliant manipulation

Search Result 5, Processing Time 0.019 seconds

A Piezo-driven Fine Manipulation System Based on Flexure Hinges for Manipulating Micro Parts (미세 부품 조작을 위한 탄성힌지 기반 압전소자 구동형 초정밀 머니플레이션 시스템)

  • Choi, Kee-Bong;Lee, Jae-Jong;Kim, Gee-Hong;Ko, Kuk-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.881-886
    • /
    • 2009
  • This paper presents a manipulation system consisting of a coarse/fine XY positioning system and an out-of-plane manipulator. The object of the system is to conduct tine positioning and manipulation of micro parts. The fine stage and the out-of-plane manipulator have compliant mechanisms with flexure hinges, which are driven by stack-type piezoelectric elements. In the fine stage, the compliant mechanism plays the roles of motion guide and displacement amplification. The out-of-plane manipulator contains three piezo-driven compliant mechanisms for large working range and fine resolution. For large displacement, the compliant mechanism is implemented by a two-step displacement amplification mechanism. The compliant mechanisms are manufactured by wire electro-discharge machining for flexure hinges. Experiments demonstrate that the developed system is applicable to a fine positioning and fine manipulation of micro parts.

3-DOF Parallel Micromanipulator : Design Consideration (3차원 평형 마이크로조정장치 : 설계 고려사항)

  • Lee, Jeong-Ick;Lee, Dong-Chan;Han, Chang-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.13-22
    • /
    • 2008
  • For the accuracy correction of the micro-positioning industrial robot, micro-manipulator has been devised. The compliant mechanisms using piezoelectric actuators is necessary geometrically and structurally to be developed by the optimization approaches. The overall geometric advantage as the mechanical efficiencies of the mechanism are considered as objective functions, which respectively art the ratio of output displacement to input force, and their constraints are the vertical notion of supporting leg and the structural strength of manipulation. In optimizing the compliant mechanical amplifier, the sequential linear programming and an optimality criteria method are used for the geometrical dimensions of compliant bridges and flexure hinges. This paper presents the integrated design process which not only can maximize the mechanism feasibilities but also can ensure the positioning accuracy and sufficient workspace. Experiment and simulation are presented for validating the design process through the comparisons of the kinematical and structural performances.

Task-Based Analysis on Number of Robotic Fingers for Compliant Manipulations

  • Kim, Byoung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.333-338
    • /
    • 2009
  • This paper presents a task-based analysis on the number of independent robotic fingers required for compliant manipulations. Based on the stiffness relation between operational space and fingertip space of a multi-fingered object manipulating system, we describe a technique for modulation of the fingertip stiffness without inter-finger coupling so as to achieve the desired stiffness specified in the operational space. Thus, we provides a guide line how many fingers are basically required for successful multi-fingered compliant tasks. Consequently, this paper enables us to assign effectively the number of fingers for various compliant manipulations by robot hands.

Strength and Stiffness Analysis for a Flexible Gripper with Parallel Pinching and Compliant Grasping Capabilities (순응형 파지와 정밀한 집기가 가능한 유연한 그리퍼의 강도 및 강성 분석)

  • Lee, Deok Won;Jeon, Hyeong Seok;Jeong, Young Jun;Kim, Yong Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.817-825
    • /
    • 2016
  • In this paper, we introduce a flexible gripper that we have engineered to precisely pinch in parallel and compliantly grasp objects. As found in most conventional industrial grippers, the parallel pinching property is essential for precise manipulation. On the other hand, the grippers with a flexible structure are more adept at grasping objects with arbitrary shapes and softness. To achieve these disparate properties, we introduce a flexible gripper mechanism composed of multiple flexible beam structures. Utilizing these beam structures, the proposed gripper is able to grasp arbitrarily shaped objects. Additionally, a unique combination of flexible beams enables the gripper to pinch objects using the parallel fingertips for enhanced precision. A detailed description of the proposed mechanism is provided, and an analysis of the strength and stiffness of the fingertip and finger body is presented. The Results section compares the theoretical and experimental analyses and verifies the properties and performance of the proposed gripper.