• Title/Summary/Keyword: Compliant coating

Search Result 10, Processing Time 0.026 seconds

Verification of drag-reduction capabilities of stiff compliant coatings in air flow at moderate speeds

  • Boiko, Andrey V.;Kulik, Victor M.;Chun, Ho-Hwan;Lee, In-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.242-253
    • /
    • 2011
  • Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.

The Transient Response Characteristics of Compliant Coating to Pressure Fluctuations

  • Lee In-Won;Chun Ho-Hwan;Kim Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.533-544
    • /
    • 2006
  • The amplitude and phase lag of surface deformation were determined for a compliant coating under the action of turbulent pressure fluctuations. For this purpose, pressure fluctuations were measured experimentally. The amplitude and duration of coherent wave train of pressure fluctuations were investigated using digital filtration. The transient response was calculated for stabilization of forced oscillations of the coating in approximation of local deformation. The response of coating was analyzed with considerations of its inertial properties and limited duration of coherent harmonics action of pressure fluctuations. It is shown that a compliant coating interacts not with the whole spectrum of pressure fluctuations, but only with a frequency range near the first resonance. According to the analysis, with increasing elasticity modulus of the coating material E, deformation amplitude decreases as 1/E, and dimensionless velocity of the coating surface decreases as $1/\sqrt{E}$. For sufficiently hard coatings, deformation amplitude becomes smaller than the thickness of viscous sublayer, while surface velocity remains comparable to vertical velocity fluctuations of the flow.

Correlation Between the Composition of Compliant Coating Material and Drag Reduction Efficiency (유연벽면 점탄성 소재 배합비와 저항저감 효과의 상관관계)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.389-395
    • /
    • 2009
  • A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Pusan National University. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of $0.55{\times}0.25m^2$ size. A set of the insertions was designed and manufactured: 3 mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic$^{(R)}$ S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss factor were measured accurately for these materials in the frequency range from 40 Hz to 3 kHz. The aging of the materials (variation of their properties) for the period of one year was documented as well. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coating. The strong compliant coating achieved 5% drag reduction within a velocity range $20{\sim}40$ m/s while standard and weak coatings increased drag reduction.

Analysis of Wave Decay Characteristics of Viscoelastic Compliant Coating (점탄성 유동벽면의 파동 감쇠 특성 해석)

  • Kulik Victor M.;Jung, Kwang-Hyo;Chun Ho-Hwan;Lee, In-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1155-1163
    • /
    • 2006
  • Calculation was carried out for phase velocity and deformation wave decay in a layer of viscoelastic material fixed tightly on the solid substrate. Analysis has been performed regarding the inner structure of the wave, i.e., the proportions between the vertical and horizontal displacements and their profiles. The wave characteristics depend strongly on media compressibility factor. The effect of viscous losses on parameters of the main oscillation mode was studied in detail. Results were compared with the model of coating with local deformation. A new experimental approach was made in order to measure such wave properties of a compliant coating as the dependency of deformation wave velocity on frequency and decay factor was made. The method for estimation of coating parameters enabling the drag reduction in turbulent flow was then refined.

Experimental Study on the Characteristics of Turbulent Wall Pressure Fluctuation Over Compliant Coatings (유연재 코팅 평판의 난류 변동압력 특성에 관한 실험적 연구)

  • Park, Kyung-Hoon;Lee, Seung-Jae;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.293-300
    • /
    • 2007
  • Turbulent boundary layer over an underwater vehicle is formed when it moves underwater and wall pressure fluctuation within the turbulent boundary layer generates flow-induced noise by exciting the elastic hull of the underwater vehicle. One of the methods to reduce this flow noise is to attach a compliant layer on the surface of the vehicle. In order to observe the possibility of noise reduction in the water when the compliant layer treatments are applied on the surface, three types of specimens those are a bare steel plate, a steel plate coated with neoprene and a steel plate with polyurethane coating material are tested at various flow speeds in a low noise cavitation tunnel. This paper presents the results of measurements and analysis of wall pressure fluctuations which is a main source of flow noise, within the turbulent boundary layer on three specimens. Its results could be shown that about 10dB reduction of wall fluctuation pressure at high frequencies was achieved due to the dissipation of turbulent energy by the compliant coating while it makes the turbulent boundary layer thicker and changes the behavior of turbulent flow in the layer.

Measurement Method of Broadband Dynamic Characteristics of Viscoelastic Material for Compliant Coating (유연벽면 점탄성 소재의 광대역 동특성 계측 기법)

  • Seoudi, Basel M.;Boiko, Andrey V.;Chun, Ho-Hwan;Lee, In-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • An improved method to measure the dynamic viscoelastic properties of elastomers is proposed. The method is based on the analysis of forced oscillation of a cylindrical sample loaded with inertial mass. No special equipment or instrumentation other than the ordinary vibration measurement apparatus is required. Typical measurement of the viscoelastic properties of a silicone rubber $Silastic^{(R)}$ S2 were measured over the wide frequency range from 10 Hz to 3 kHz under the action of wide region of deformation from $10^{-4}%$ to 5%. It was shown that modulus of elasticity and loss tangent fall on the single curves when the ratio of load mass to sample mass changed from 1 to 20.

Synthesis and Tribological Behavior of Nanocomposite Polymer Layers

  • Tsukruk, V.V.;Ahn, Hyo-Sok;Julthongpiput, D.;Kim, Doo-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.51-52
    • /
    • 2002
  • We report results on microtribological studies of chemically grafted nanoscale polymer layers of different architecture with thickness below 30 nm. We have fabricated the molecular lubrication coatings from elastomeric tri-block copolymers and tested two different designs of corresponding nanocomposite coatings. We observed a significant reduction of friction forces and an increase of the wear stability when a minute amount of oil was trapped within the grafted polymer layer. These polymer gel layers exhibited a very steady friction response and a small value of the coefficient of friction as compared to the initial polymer coating. A polymer 'triplex' coating has been formed by a multiple grafting technique. The unique design of this layer Includes a hard-soft-hard architecture with a compliant rubber interlayer mediating localized stresses transferred through the topmost hard layer. This architecture provides a non-linear mechanical response under a normal compression stress and allows additional dissipation of mechanical energy via the elastic rubber interlayer.

  • PDF

An Experimental Study on the Structural Dynanmic Coefficients of Self-Acting Compliant Foil Journal Bearings (범프 포일 베어링들의 동적 계수에 관한 실험적 연구)

  • Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon;Lee, Yong-Bok
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.42-48
    • /
    • 2002
  • Experiments were conducted to determine the structural dynamic characteristics of bump foil bearing. The housing of the bearing on the journal was driven by two shakers which were used to simulate dynamic forces acting on the bump foil strips. Three different bump foils(Cu-coated bump, silicon bump, viscoelastic bump) are tested and the dynamic coefficients of three bump foils compared, based on the experimental measurements for a wide range of operating conditions. From the test results, the high damping coefficients of viscoelastic bump are achieved and the possibility of the super-bending-critical operation is suggested.

High aspect ratio wrinkled patterns on polymers by glancing angle deposition

  • Ko, Tae-Jun;Ahmed, Sk. Faruque;Lee, Kwang-Ryeol;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.335-335
    • /
    • 2011
  • Instability of a thin film attached to a compliant substrate often leads to emergence of exquisite wrinkle patterns with length scales that depend on the system geometry and applied stresses. However, the patterns that are created using the current techniques in polymer surface engineering, generally have low aspect ratio of undulation amplitude to wavelength, thus, limiting their application. Here, we present a novel and effective method that enables us to create wrinkles with a desired wavelength and high aspect ratio of amplitude over wavelength as large as to 2.5:1. First, we create buckle patterns with high aspect ratio of amplitude to wavelength by deposition of an amorphous carbon film on a surface of a soft polymer poly(dimethylsiloxane) (PDMS). Amorphous carbon films are used as a protective layer in structural systems and biomedical components, due to their low friction coefficient, strong wear resistance against, and high elastic modulus and hardness. The deposited carbon layer is generally under high residual compressive stresses (~1 GPa), making it susceptible to buckle delamination on a hard substrate (e.g. silicon or glass) and to wrinkle on a flexible or soft substrate. Then, we employ glancing angle deposition (GLAD) for deposition of a high aspect ratio patterns with amorphous carbon coating on a PDMS surface. Using this method, pattern amplitudes of several nm to submicron size can be achieved by varying the carbon deposition time, allowing us to harness patterned polymers substrates for variety of application. Specifically, we demonstrate a potential application of the high aspect wrinkles for changing the surface structures with low surface energy materials of amorphous carbon coatings, increasing the water wettability.

  • PDF