• Title/Summary/Keyword: Complex oil

Search Result 312, Processing Time 0.025 seconds

Research to Predict the Thermal Characteristics of Electro Hydrostatic Actuator for Aircraft (항공기용 전기-정유압식 작동기(Dual Redundant Asymmetric Tandem EHA)의 열특성 예측을 위한 연구)

  • Kim, Sang Seok;Park, Hyung Jun;Kim, Daeyeon;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.84-92
    • /
    • 2022
  • The electro-hydrostatic actuator (EHA) recently has been used in flight control fields for aircraft because of its benefits of minimizing oil leakage and weight, improving safety, and etc. while independently operating the hydraulic power source and eliminating complex hydraulic piping. The aircraft of which EHA is installed inside, has the thermal management issue of EHA, because of its limited cooling source as compared with the aircraft which installs the traditional central hydraulic system. So, the thermal analysis model which predicts the thermal characteristics of EHA, is required to resolve this thermal management issue. In this study, an oil circulation circuit inside the hydraulic power module comprised of hydraulic pump and electrical motor for EHA was applied. This is for the purpose of developing the internal rotary group of hydraulic power module, which operates under the conditions of high rotation speed and hydraulic pressure. After formulating an appropriate thermal analysis model, the thermal analysis results with oil cooled or no oil cooled hydraulic control module were compared and reviewed, for the purpose of predicting the thermal characteristics of EHA.

Effects of Expander Conditioning of Complex Nursery Diets on Growth Performance of Weanling Pigs

  • Johnston, S.L.;Hines, R.H.;Hancock, J.D.;Behnke, K.C.;Traylor, S.L.;Chae, B.J.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.395-399
    • /
    • 1999
  • Three experiments were conducted to determine the effects of conditioning a complex (20% whey, 10% lactose, 4% plasma protein, 4% wheat gluten and 2% blood meal) diet on growth performance of weanling pigs. In Exp. 1,180 pigs (average initial BW of 6.4 kg) were fed the experimental diet (1.7% lysine) during a 7-d growth assay. Treatments were a meal control (M), standard (ST), and expander (EX) conditioned mash or pellets. Rate and efficiency of gain were decreased by 39% and 21% (p<0.005) respectively, for pigs fed EX diets compared to those fed the ST diet. In Exp. 2,196 pigs (average initial BW of 6.5 kg) were used to determine the effects of EX operating conditions on nutritional value of a pelleted complex diet. When steam conditioning temperature (prior to expanding) was $54^{\circ}C$, increasing cone pressure of the EX from 0 to 7 to 14 kg/cm2 resulted in linear decreases in rate of gain of weaned pigs (p<0.006), suggesting heat damage of the diet. Increasing conditioning temperature (i.e., adding steam) of the diets from 46 to 54 to $63^{\circ}C$ (cone pressure at $12kg/cm^2$) resulted in improved rate of gain (p<0.04) of the pigs. However, none of the pigs fed expanded diets compared favorably to the pigs fed the conditioned $(54^{\circ}C)$ pellets processed with no cone pressure. In Exp. 3,168 pigs (average initial BW of 6.6 kg) were used to determine the effects of expanding the various components of the diet. Treatments were M and ST pellets as controls, EX-corn, EX-corn soybean-meal, EX corn-soybean meal-oil, and EX-complete diet. Efficiency of gain was increased by 13% with EX portions of the diet compared to the mash control, but there was a marked decrease in performance when the complete diet was expanded (p<0.001). Expanded corn-soybean meal-oil supported the greatest ADG with a 19% increase compared to the average of the EX corn and EX corn-soybean meal treatments (p<0.005). In conclusion, our results suggest no benefit from expanding complete phase-I diets.

Study on Parameters for Optimum Design of Integrated Subsea System (Subsea System 최적 설계 요소에 관한 연구)

  • Choi, Han-Suk;Do, Chang-Ho;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.340-349
    • /
    • 2012
  • The mitigation of gap between technology and it's applicability in the oil and gas industry has led to a rapid development of deepwater resources. Historically, subsea wells have good track records. However, an ever increasing water depths and harsher environments being encountered are currently posing challenges to subsea production. Complex subsea systems are now being deployed in ways rarely encountered in previous development schemes. These increasingly complex systems present a number of technical challenges. This study presents the challenges in subsea production systems, considering the technical and safety issues in design and installation associated with current development modality.

Development of Integrated Corrosion Monitoring and Control System (통합 부식 모니터링 및 통합 제어 시스템의 개발)

  • Yoo, Nam-Hyun;Kim, Young-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.8-14
    • /
    • 2013
  • Although there are various factors that threaten the security of ships, one of the most harmful is corrosion. It is not easy to find corroding areas and the status of corrosion, even though corrosion causes serious problems such as submergence and marine pollution as a result of leaking oil and polluted water. To monitor the corrosion of ships, non-destructive inspection, weight loss coupons, electrical resistance, linear polarization resistance, zero resistance ammeter, and electrochemical impedance spectroscopy have been developed. However, these methods require much time to detect corrosion, and most are not appropriate for real time monitoring. Coating, sacrificial anode, and impressed current cathodic protection (ICCP) methods have been developed to control corrosion. The ICCP and sacrificial anode methods are the most popular ways to prevent ship corrosion. However, ICCP is only appropriate for the outside of a ship and cannot be used for complex structures such as ballast tanks because these are composed of many separate chambers. Sacrificial anodes have to be replaced periodically. This paper proposes an integrated corrosion monitoring and control system (ICMCS) that can detect corrosion in real time and is appropriate for complex structures such as ballast tanks. Because the system uses titanium for an anode, exhausted anodes do not need to be replaced.

Synthesis of Nanosized Titanium-Colloid by Sol-Gel Method and Characterization of Zinc Phosphating (졸-겔법에 의한 나노크기의 티탄-콜로이드 합성 및 인산염 피막 특성)

  • Lee Man Sig;Lee Sun-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • Nanosized titanium-colloid particles were prepared by sol-gel method. The physical properties, such as thermal stability, crystallite size and crystallinity according to synthesis condition have been investigated by TEM, XRD, SEM, TGA and DTA. In addition, Zinc phosphating has been studied in order to compare the phosphating characterization of prepared nanosized titanium-colloid particles. The major phase of all the prepared titanium-colloid particles was an amorphous structure regardless of synthesis temperature and the structure was composed of phoshate complex and titanium. The micrographs of HR- TEM showed that nanosized titanium-colloid particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the titanium-colloid particles synthesized at 80℃ was 4-5 nm and increased to 8-10 nm with an increase of synthesis temperature (150℃). In addition, the coating weight increased with an increase of temperature of phosphating solution and when the concentration of titanium-colloid was 2.0 g/l, the coating weight was 1.0 g/㎡.

Preparation of Mucoadhesive Chitosan-Poly(acrylic acid) Microspheres by Interpolymer Complexation and Solvent Evaporation Method I

  • Cho, Sang-Min;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.95-99
    • /
    • 2005
  • Mucoadhesive microspheres were prepared by interpolymer complexation of chitosan with poly(acrylic acid) (PAA) and solvent evaporation method to increase gastric residence time. The chitosan-PAA complex formation was confirmed by differential scanning calorimetry and swelling study. The DSC thermogram of chitosan-PAA microspheres showed two exothermic peaks for the decomposition of chitosan and PAA. The swelling ratio of the chitosan-PAA microspheres was dependent on the pH of the medium. The swelling ratio was higher at pH 2.0 than at neutral pH. The results indicated that the microspheres were formed by electrostatic interaction between the carboxyl groups of PAA and the amine groups of chitosan. The effect of various process parameters on the formation and morphology of microspheres was investigated. The best microspheres were obtained when 1.5% of the high molecular weight chitosan and 0.3% of PAA were used as an internal phase. The optimum internal phase volume was 7%. The com oil was used as the external phase of emulsion, and span 80 was used as the surfactant. The prepared microspheres had spherical shape.

A water treatment case study for quantifying model performance with multilevel flow modeling

  • Nielsen, Emil K.;Bram, Mads V.;Frutiger, Jerome;Sin, Gurkan;Lind, Morten
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.532-541
    • /
    • 2018
  • Decision support systems are a key focus of research on developing control rooms to aid operators in making reliable decisions and reducing incidents caused by human errors. For this purpose, models of complex systems can be developed to diagnose causes or consequences for specific alarms. Models applied in safety systems of complex and safety-critical systems require rigorous and reliable model building and testing. Multilevel flow modeling is a qualitative and discrete method for diagnosing faults and has previously only been validated by subjective and qualitative means. To ensure reliability during operation, this work aims to synthesize a procedure to measure model performance according to diagnostic requirements. A simple procedure is proposed for validating and evaluating the concept of multilevel flow modeling. For this purpose, expert statements, dynamic process simulations, and pilot plant experiments are used for validation of simple multilevel flow modeling models of a hydrocyclone unit for oil removal from produced water.

Geomechanical study of well stability in high-pressure, high-temperature conditions

  • Moradi, Seyyed Shahab Tabatabaee;Nikolaev, Nikolay I.;Chudinova, Inna V.;Martel, Aleksander S.
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.331-339
    • /
    • 2018
  • Worldwide growth in hydrocarbon and energy demand is driving the oil and gas companies to drill more wells in complex situations such as areas with high-pressure, high-temperature conditions. As a result, in recent years the number of wells in these conditions have been increased significantly. Wellbore instability is one of the main issues during the drilling operation especially for directional and horizontal wells. Many researchers have studied the wellbore stability in complex situations and developed mathematical models to mitigate the instability problems before drilling operation. In this work, a fully coupled thermoporoelastic model is developed to study the well stability in high-pressure, high-temperature conditions. The results show that the performance of the model is highly dependent on the truly evaluated rock mechanical properties. It is noted that the rock mechanical properties should be evaluated at elevated pressures and temperatures. However, in many works, this is skipped and the mechanical properties, which are evaluated at room conditions, are entered into the model. Therefore, an accurate stability analysis of high-pressure, high-temperature wells is achieved by measuring the rock mechanical properties at elevated pressures and temperatures, as the difference between the model outputs is significant.

Development of the vac Source Profile using Collinearity Test in the Yeosu Petrochemical Complex (여수석유화학산단의 공선성 시험을 이용한 VOC 오염원 분류표 개발)

  • Jeon Jun-Min;Hur Dang;Hwang In Jo;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.315-327
    • /
    • 2005
  • The total of 35 target VOCs (volatile organic compounds), which were included in the TO-14, was selected to develop a VOCs' source profile matrix of the Yeosu Petrochemical Complex and to test its collinearity by singular value decomposition(SVD) technique. The VOCs collected in canisters were sampled from 12 different sources such as 8 direct emission sources (refinery, painting, wastewater treatment plant, incinerator, petrochemical processing, oil storage, fertilizer plant, and iron mill) and 4 general area sources (gasoline vapor emission, graphic art activity, vehicle emission, and asphalt paving activity) in this study area, and then those samples were analyzed by GC/MS. Initially the resulting raw data for each profile were scaled and normalized through several data treatment steps, and then specific VOCs showing major weight fractions were intensively reviewed and compared by introducing many other related studies. Next, all of the source profiles were tested in terms of degree of collinearity by SVD technique. The study finally could provide a proper VOCs' source profile in the study area, which can give opportunities to apply various receptor models properly including chemical mass balance (CMB).

In Vivo Antitumor Activity of Hydrophilic Arginine-Conjugated Linoleic Acid Complex

  • Kim, Young-Jun;Lee, Ki-Won;Kim, Dae-Ok;Kim, Tae-Wan;Lee, Seong-Kweon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.411-414
    • /
    • 2004
  • Although conjugated linoleic acid (CLA) exerted potent antitumor activities in several animal models, application of CLA as a bioactive ingredient has been limited due to its hydrophobicity. This study was designed to determine the antitumor activity of arginine-CLA complex (Arg-CLA), a hydrophilic form of CLA. Mouse forestomach cancer was induced by gavage with benzo(a)pyrene (B(a)p) for 4-weeks prior to Arg-CLA (0.2 and 0.5%) feeding. Complete necropsies were performed to determine the number, size and locations of all the forestomach tumors at 20 weeks post-B(a)P administration. All mice in the B(a)P group developed tumors, and tumor incidences were decreased by 31 % and 44% in 0.2% and 0.5% Arg-CLA-fed groups, respectively, whereas no decrease was observed when Arg or com oil was given alone. Our results suggest that Arg-CLA suppresses mouse forestomach cancer.