• Title/Summary/Keyword: Complex odors

Search Result 31, Processing Time 0.021 seconds

Odorous Compound Concentration Levels in Bon-San Industrial Area and Its Surrounding Regions (김해시 본산공단 주변지역의 환경대기 중 주요 악취물질의 농도 특성에 관한 연구)

  • Jeong, Seong-Wook;Byeon, Ki-Yeong;Park, Heung-Jai
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.49-55
    • /
    • 2012
  • In this study, the characteristic of offensive major odorous compound from the Bon-San industrial complex in Gimhae were determined by analytical methods of Gas Chromatography, High Performance Liquid Chromatography and UV/VIS Spectrophotometer. The kind of major odorous compounds examined acetaldehyde, sulfur compounds, ammonia and styrene. The concentration of all odorous compounds at 3 sampling points of industrial complex were lower than those of regulation standard levels of the industrial complex in Korea. The mean concentration of hydrogen sulfide was 0.0235 ppm at sampling point 2, it was higher than other sampling point. Complex odors was lower than regulation standard levels of the industrial complex in Korea.

Measurement and Analysis of Odors Generated in Traditional Markets

  • KIM, Su-Hye;CHO, Dong-Myung;KWON, Lee-Seung;JUNG, Min-Jae
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.4
    • /
    • pp.35-41
    • /
    • 2021
  • Purpose: The purpose of this study is to identify the causes of odors generated in traditional markets and to suggest appropriate application technologies to solve them. Research design, data and methodology: In order to achieve the purpose of this study, complex malodors, TVOC, and hydrogen sulfide were measured three times at each point in Wonju-city, Gangwon-do using direct-reading odor measuring equipment in Joong-ang Traditional Market's Korean beef Alley, Sundae Alley, and Joong-ang Citizens Traditional Market. Therefore, the average value was compared with the emission standard and analyzed. Results: As a result of the study, complex malodors exceeded the emission standards at all points, and hydrogen sulfide exceeded the emission standards at all except for one point. Conclusions: The odor generated in the traditional market has various causes and low concentration, so it is necessary to reduce the odor by using an appropriate technology.

An Analysis of Odors in Traditional Market in Wonju, Gangwon-do

  • KIM, Su-Hye;LEE, Woo-Sik;JEONG, Tae-Hwan;JUNG, Min-Jae
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.3
    • /
    • pp.19-25
    • /
    • 2022
  • Purpose: As interest in odor increases, odor complaints are also rapidly increasing. Traditional markets are not included in malodor control areas and are not easy to manage, so measure the odor substances generated in traditional markets and analyze the cause of high concentration points. Research design, data and methodology: The average value was presented by continuously measuring the combined odor, TVOC, hydrogen sulfide, and ammonia for 5 minutes at 100m intervals in Joong-ang traditional market, Jayu traditional market, Doraemi traditional market, and Sundae Alley in Wonju, Gangwon-do. In each market, up to the third highest concentration point for each measurement item was marked and analyzed. Results: The Joong-ang traditional market, Doraemi traditional market, and Sundae Alley had high readings at the intersection. The Jayu traditional market had high measurements around restaurants and clothing stores. In addition, the concentration of complex malodors was also high at the points where the hydrogen sulfide concentration was measured. Conclusions: Odor generated in traditional markets is an important indicator for merchants and consumers. Therefore, in future studies, analysis that can supplement the limitations of measurement data and seasonal effects is needed.

The Foul Smelling from Sewer Pipe near Large Apartment Complexes and its Countermeasures I: Characteristics of the Foul-Smelling Sewer Pipe in Residential Areas (대규모 아파트 단지주변 하수관로의 악취 발생과 대책 1: 주거지역 하수관로의 악취 발생 특성)

  • Lee, Jang-Hown;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.621-629
    • /
    • 2007
  • This study intends to investigate the characteristics of the foul smell of sewer pipes near large apartment complexes as complaints about offensive odors have drastically increased in urban residential areas. Targeting apartments where people actually complained about foul orders, the study result revealed that components in the smell of the water-purifier tank of the target apartment were very similar to those of sewage treatment plants and night soil treatment plants. Measuring components of odors inside the management layer of tank showed that the concentration of hydrogen sulfide was 10ppm, which is approximately 160 times the safety standard of 0.06ppm; the concentration of mercaptan was 0.9ppm, which is about 220 times the safety standard of 0.004ppm. The source materials of foul odors were discharged outside through ducts, and those households living near outlets producing bad smell complain that it gets worse depending on the air pressure or wind direction and strength, and they could not even open windows. As well, these source materials were transferred by discharge pumps to public sewer pipes outside the apartment complex. While discharge pumps starts operating, they remain on the sewer pipe and then begin to spread over to roads through small openings of manholes on the road. Then, the smell offends passers-by and residents near the road, leading to a lot of complaints. The study results suggest that, among the sources of foul odors in sewer pipes of residential areas, especially those from the water-purifier tank of large apartments, hydrogen sulfide should be the main target for follow-up treatment.

Odors Removal by using Manganese Oxide Catalysts (망간산화물 촉매를 이용한 악취제거)

  • Seo, Seong-Gyu;Yoon, Hyung-Sun;Ma, Zhong-Kun;Liu, Yi
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.443-448
    • /
    • 2010
  • The objective of this study was to assess the catalytic activities of manganese oxide (MnO, $MnO_2$, $Mn_2O_3$, and $Mn_3O_4$) catalysts for odors (acetaldehyde and propionaldehyde) removal. We used a fixed bed reactor as the experimental apparatus and the catalytic performance were carried out over the temperature range of $200{\sim}470^{\circ}C$. The properties and performance of catalysts were characterized by the X-ray diffraction (XRD) and Brunauer Emmett Teller (BET). The catalytic activities of manganese oxide catalysts for acetaldehyde combustion were in the order of MnO < $MnO_2$ < $Mn_2O_3$ < $Mn_3O_4$, and it is similar to that of propionaldehyde combustion. We also confirmed that the reactions have well followed the kinetic model of Power-Rate Law and the reaction order (n) is 1 for both of the acetaldehyde and propionaldehyde combustion. In addition, the reaction activation energy of acetaldehyde and propionaldehyde combustion over $Mn_3O_4$ were found to be $72.42\;kJmol^{-1}$ for 487~503 K and $51.14\;kJmol^{-1}$ for 473~533 K, respectively.

Analysis on an Oxidation-Reduction Reaction of Photocatalytic Plasma Complex Module

  • KIM, Young-Do;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.2
    • /
    • pp.21-27
    • /
    • 2022
  • Purpose: This study is about photocatalytic technology and plasma oxidation-reduction technology. To the main cause of exposure to odor pollution, two deodorization techniques were applied to develop a module with higher removal efficiency and ozone reduction effect. Research design, data and methodology: A composite module was constructed by arranging two types of dry deodorization equipment (catalyst, adsorbent) in one module. This method was designed to increase the responsiveness to the components of complex odors and the environment. standard, unity, two types of oxidizing photo-catalyst technology and plasma dry deodorization device installed in one module to increase the potential by reduction to 76% of ozone, 100%, and 82%. Results: The complex odor disposal efficiency was 92%. Ammonia was processed with 50% hydrogen sulfide and 100% hydrogen sulfide, and ozone was 0.01ppm, achieving a target value of 0.07ppm or less. The combined odor showed a disposal efficiency of 93%, ammonia was 82% and hydrogen sulfide was 100% processed, and ozone achieved a target value of 0.07 ppm or less. Conclusions: Ozone removal efficiency was 76% by increasing Oxidation-Reduction Reaction(ORR). The H2S removal efficiency of the deodorizer was higher than that of the biofilter system currently used in sewage disposal plants.

A Survey on Current State of Odor Emission and Control from Livestock Operations (축산농장의 악취 발생과 관리에 관한 실태조사)

  • Kim, Doo-Hwan;Lee, In-Bok;Choi, Dong-Yoon;Song, Jun-Ik;Jeon, Joong-Hwan;Ha, Duk-Min
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2013
  • This survey was conducted to investigate the current state of odor emission and control from 48 site of Hanwoo, dairy, swine and poultry farms in Korea. On-site complex odors assessment by the method of 6 step direct sensory evaluation and ammonia concentrations by portable gas detector on the boundary line of farms were evaluated and detected as 1.11 & 2.78 ppm, 1.67 & 2.56 ppm, 1.91 & 2.89 ppm, 1.8 & 2.4 ppm and 1.33 & 2.33 ppm, respectively. Almost of Hanwoo, dairy and poultry farms were nothing the complaints occurred for the last 2 years, however as 60% of swine farms were suffered odor complain. All of livestock operations were used the additives for improving the farm environment and spent the considerable costs for odor reduction. There were several plans almost farms, as a fortify maintenance, keep clean, tree planting, expansion facilities for manure treatment or odor reduction.

Evaluation of Livestock Odor Reduction Efficiency for Odor Reduction Systems in Domestic Pig Farms (돈사용 스크러버 및 바이오커튼의 축산악취 저감효과 분석)

  • Lee, Minhyung;Yeo, Uk-hyeon;Lee, In-Bok;Jeong, Duek-young;Lee, Sang-yeon;Kim, Jun-gyu;Decano-Valentin, Cristina;Choi, Young-bae;Kang, Sol-moe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.77-86
    • /
    • 2022
  • Various odor reduction systems are being operated at pig houses to improve livestock odor issues. However, the quantitative evaluation of odor reduction efficiency is not sufficiently conducted. The analysis of factors that affect the reduction efficiency also has not been sufficiently conducted. Therefore, in this study, the reduction efficiency of representative odor reduction facilities (bio-curtain, scrubber) operated by domestic pig houses was evaluated. The odor reduction efficiency was evaluated by sampling the air before and after the odor reduction facility in 6 pig houses. Livestock odors were evaluated for complex odors, ammonia, hydrogen sulfide, and VOC. To find factors for reduction efficiency, temperature, humidity, pH of washing resolution, type of washing water, and ventilation rate was measured. As a result, it was found that the scrubber system had the highest reduction efficiency. The reduction efficiency was found to be affected by the scrubber's washing resolution, filler, operating conditions, and size. Bio-curtains may have problems such as deterioration of fan performance due to ventilation fan load, groundwater pollution, and excessive use of groundwater.

Analysis of Odor Data Based on Mixed Neural Network of CNNs and LSTM Hybrid Model

  • Sang-Bum Kim;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.464-469
    • /
    • 2023
  • As modern society develops, the number of diseases caused by bad smells is increasing. As it can harm people's health, it is important to predict in advance the extent to which bad smells may occur, inform the public about this, and take preventive measures. In this paper, we propose a hybrid neural network structure of CNN and LSTM that can be used to detect or predict the occurrence of odors, which are most required in manufacturing or real life, using odor complex sensors. In addition, the proposed learning model uses a complex odor sensor to receive four types of data, including hydrogen sulfide, ammonia, benzene, and toluene, in real time, and applies this data to the inference model to detect and predict the odor state. The proposed model evaluated the prediction accuracy of the training model through performance indicators based on accuracy, and the evaluation results showed an average performance of more than 94%.

Patterns of Offensive Odor Compounds According to Blocks in Shiwha Industrial Complex (시화산업단지의 블록 별 악취유발물질 특성)

  • Byeon, Sang-Hoon;Lee, Jung-Geun;Kim, Jung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1161-1168
    • /
    • 2009
  • This research was conducted on characteristic of offensive odors in Shihwa industrial complex. Result of blocks distribution of TVOC indicates that mechanic block, site D, was the highest concentration (74 ppb). Chemistry block, site A, was the second highest concentration (50 ppb). Also, mixed blocks, metal blocks and park etc. were measured almost similar concentration about 30 ppb, but mixed block, site F, was the place where concentrations were the smallest. Average of TVOC was shown about 35 ppb concentration. Aldehydes including acetaldehyde, butyraldehyde and hydrogen sulfide concentrations were prevalent among offensive odors in Shihwa industrial complex. Comparing the offensive odor intensity mostly about acetaldehyde, butyraldehyde and hydrogen sulfide which contain high offensive odor intensity showed results that sites A, B (chemistry block) and site D, I (mechanic block) site H (metal block) have showed the intensity over 1. In the case of acetaldehyde, relatively the high odor intensities over '2' were able to obtain in many cases. The correlation coefficient (r) for hydrogen sulfide was 0.91, so that high positive correlation exists between offensive odor intensity and the hydrogen sulfide element. Butyraldehyde also showed high positive correlation coefficient, as 0.82. Correlation coefficient of acetaldehyde that had the highest value as offensive odor substance was 0.62, had somewhat correlation with offensive odor intensity.