• 제목/요약/키워드: Complex networks

검색결과 941건 처리시간 0.025초

Link Prediction in Bipartite Network Using Composite Similarities

  • Bijay Gaudel;Deepanjal Shrestha;Niosh Basnet;Neesha Rajkarnikar;Seung Ryul Jeong;Donghai Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2030-2052
    • /
    • 2023
  • Analysis of a bipartite (two-mode) network is a significant research area to understand the formation of social communities, economic systems, drug side effect topology, etc. in complex information systems. Most of the previous works talk about a projection-based model or latent feature model, which predicts the link based on singular similarity. The projection-based models suffer from the loss of structural information in the projected network and the latent feature is hardly present. This work proposes a novel method for link prediction in the bipartite network based on an ensemble of composite similarities, overcoming the issues of model-based and latent feature models. The proposed method analyzes the structure, neighborhood nodes as well as latent attributes between the nodes to predict the link in the network. To illustrate the proposed method, experiments are performed with five real-world data sets and compared with various state-of-art link prediction methods and it is inferred that this method outperforms with ~3% to ~9% higher using area under the precision-recall curve (AUC-PR) measure. This work holds great significance in the study of biological networks, e-commerce networks, complex web-based systems, networks of drug binding, enzyme protein, and other related networks in understanding the formation of such complex networks. Further, this study helps in link prediction and its usability for different purposes ranging from building intelligent systems to providing services in big data and web-based systems.

Challenges and New Approaches in Genomics and Bioinformatics

  • Park, Jong Hwa;Han, Kyung Sook
    • Genomics & Informatics
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 2003
  • In conclusion, the seemingly fuzzy and disorganized data of biology with thousands of different layers ranging from molecule to the Internet have refused so far to be mapped precisely and predicted successfully by mathematicians, physicists or computer scientists. Genomics and bioinformatics are the fields that process such complex data. The insights on the nature of biological entities as complex interaction networks are opening a door toward a generalization of the representation of biological entities. The main challenge of genomics and bioinformatics now lies in 1) how to data mine the networks of the domains of bioinformatics, namely, the literature, metabolic pathways, and proteome and structures, in terms of interaction; and 2) how to generalize the networks in order to integrate the information into computable genomic data for computers regardless of the levels of layer. Once bioinformatists succeed to find a general principle on the way components interact each other to form any organic interaction network at genomic scale, true simulation and prediction of life in silico will be possible.

전력계토 안정화 제어를 위한 신경회로만 분산체어기의 구성에 관한 연구 (A Study on the Feedforward Neural Network Based Decentralized Controller for the Power System Stabilization)

  • 최면송;박영문
    • 대한전기학회논문지
    • /
    • 제43권4호
    • /
    • pp.543-552
    • /
    • 1994
  • This paper presents a decentralized quadratic regulation architecture with feedforward neural networks for the control problem of complex systems. In this method, the decentralized technique was used to treat several simple subsystems instead of a full complex system in order to reduce training time of neural networks, and the neural networks' nonlinear mapping ability is exploited to handle the nonlinear interaction variables between subsystems. The decentralized regulating architecture is composed of local neuro-controllers, local neuro-identifiers and an overall interaction neuro-identifier. With the interaction neuro-identifier that catches interaction characteristics, a local neuro-identifier is trained to simulate a subsystem dynamics. A local neuro-controller is trained to learn how to control the subsystem by using generalized Backprogation Through Time(BTT) algorithm. The proposed neural network based decentralized regulating scheme is applied in the power System Stabilization(PSS) control problem for an imterconnected power system, and compared with that by a conventional centralized LQ regulator for the power system.

Assessing the ductility of moment frames utilizing genetic algorithm and artificial neural networks

  • Mazloom, Moosa;Afkar, Hossein;Pourhaji, Pardis
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.445-461
    • /
    • 2018
  • The aim of this research is to evaluate the effects of the number of spans, height of spans, number of floors, height of floors, column to beam moment of inertia ratio, and plastic joints distance of beams from columns on the ductility of moment frames. For the facility in controlling the ductility of the frames, this paper offers a simple relation instead of complex equations of different codes. For this purpose, 500 analyzed and designed frames were randomly selected, and their ductility was calculated by the use of nonlinear static analysis. The results cleared that the column-to-beam moment of inertia ratio had the highest effect on ductility, and if this relation was more than 2.8, there would be no need for using the complex relations of codes for controlling the ductility of frames. Finally, the ductility of the most frames of this research could be estimated by using the combination of genetic algorithm and artificial neural networks properly.

Neighborhood coreness algorithm for identifying a set of influential spreaders in complex networks

  • YANG, Xiong;HUANG, De-Cai;ZHANG, Zi-Ke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.2979-2995
    • /
    • 2017
  • In recent years, there has been an increasing number of studies focused on identifying a set of spreaders to maximize the influence of spreading in complex networks. Although the k-core decomposition can effectively identify the single most influential spreader, selecting a group of nodes that has the largest k-core value as the seeds cannot increase the performance of the influence maximization because the propagation sphere of this group of nodes is overlapped. To overcome this limitation, we propose a neighborhood coreness cover and discount heuristic algorithm named "NCCDH" to identify a set of influential and decentralized seeds. Using this method, a node in the high-order shell with the largest neighborhood coreness and an uncovered status will be selected as the seed in each turn. In addition, the neighbors within the same shell layer of this seed will be covered, and the neighborhood coreness of the neighbors outside the shell layer will be discounted in the subsequent round. The experimental results show that with increases in the spreading probability, the NCCDH outperforms other algorithms in terms of the affected scale and spreading speed under the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected (SI) models. Furthermore, this approach has a superior running time.

스트리밍 빅데이터의 프라이버시 보호 동반 실용적 분석을 통한 지식 활용과 재사용 연구 (Research of Knowledge Management and Reusability in Streaming Big Data with Privacy Policy through Actionable Analytics)

  • 백주련;이영숙
    • 디지털산업정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.1-9
    • /
    • 2016
  • The current meaning of "Big Data" refers to all the techniques for value eduction and actionable analytics as well management tools. Particularly, with the advances of wireless sensor networks, they yield diverse patterns of digital records. The records are mostly semi-structured and unstructured data which are usually beyond of capabilities of the management tools. Such data are rapidly growing due to their complex data structures. The complex type effectively supports data exchangeability and heterogeneity and that is the main reason their volumes are getting bigger in the sensor networks. However, there are many errors and problems in applications because the managing solutions for the complex data model are rarely presented in current big data environments. To solve such problems and show our differentiation, we aim to provide the solution of actionable analytics and semantic reusability in the sensor web based streaming big data with new data structure, and to empower the competitiveness.

Generic Multidimensional Model of Complex Data: Design and Implementation

  • Khrouf, Kais;Turki, Hela
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12spc호
    • /
    • pp.643-647
    • /
    • 2021
  • The use of data analysis on large volumes of data constitutes a challenge for deducting knowledge and new information. Data can be heterogeneous and complex: Semi-structured data (Example: XML), Data from social networks (Example: Tweets) and Factual data (Example: Spreading of Covid-19). In this paper, we propose a generic multidimensional model in order to analyze complex data, according to several dimensions.

온대활엽수림 생태수문계의 과정망: 복잡계 관점 (Process Networks of Ecohydrological Systems in a Temperate Deciduous Forest: A Complex Systems Perspective)

  • 윤주열;김세희;강민석;조천호;천정화;김준
    • 한국농림기상학회지
    • /
    • 제16권3호
    • /
    • pp.157-168
    • /
    • 2014
  • 본 총설에서는 산림생태계의 생태수문시스템을 복잡계의 관점에서 바라 보았을 때, (1) 생태수문계의 구성 요소들이 상호작용을 통해 망을 형성하고 집단적인 반응을 하며, (2) 복잡정교한 정보 처리를 수행하고, (3) 자기-조직화 과정을 통해 적응해 가는 복잡계의 특징들을 볼 수 있을 것이라고 가정하였다. 제시된 과정망 그리기의 결과는 생태수문계에 관여하는 다양한 시공간 규모의 과정들이 실제로 관련 변수들 간의 되먹임과 정보 흐름의 망을 형성하고 있음을 명확히 보여준다. 또한 구성 변수들이 독특한 형태(즉, 차별화된 결합 형태, 방향성 및 시간 지연 규모)로 정보를 교환함으로써, 망 안에 또 다른 망을 형성하며 일관되게 조직화되어 특정한 하부계들을 구성하는 계층적(hierarchical) 구조를 잘 나타낸다. 이러한 하부계들이 종관 하부계(SS), 대기경계층 하부계(ABLS), 생물리 하부계(BPS), 생물리화학 하부계(BPCS) 등으로 다양하게 나타남을 보여준다. 주목할 점은, 이러한 하부계들이 서로 되먹임 고리들을 맺거나 끊음으로써 지역하부계(RS)와 같은 새로운 하부계의 집합체를 생성하거나, 또는 분리시킨다는 것이다. 이러한 과정은 바로 복잡계의 특성인 자기-조직화 과정의 증거로서, 생태계가 계층적으로 조직화되어 성장하고 발전하면서, 자연적/인위적 교란 속에서도 자기-조직화를 통해 동적 평형을 유지하며, 환경 변화에 적응하고 진화해 나감을 함축적으로 의미한다. 생태계의 건전성은 시스템의 자기-조직화 과정들이 유지될 때에 비로소 보존되는 것이기 때문에, 이러한 관점에서 과정망 연구방법은 의미있고 이치에 닿는다.

Community Detection using Closeness Similarity based on Common Neighbor Node Clustering Entropy

  • Jiang, Wanchang;Zhang, Xiaoxi;Zhu, Weihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2587-2605
    • /
    • 2022
  • In order to efficiently detect community structure in complex networks, community detection algorithms can be designed from the perspective of node similarity. However, the appropriate parameters should be chosen to achieve community division, furthermore, these existing algorithms based on the similarity of common neighbors have low discrimination between node pairs. To solve the above problems, a noval community detection algorithm using closeness similarity based on common neighbor node clustering entropy is proposed, shorted as CSCDA. Firstly, to improve detection accuracy, common neighbors and clustering coefficient are combined in the form of entropy, then a new closeness similarity measure is proposed. Through the designed similarity measure, the closeness similar node set of each node can be further accurately identified. Secondly, to reduce the randomness of the community detection result, based on the closeness similar node set, the node leadership is used to determine the most closeness similar first-order neighbor node for merging to create the initial communities. Thirdly, for the difficult problem of parameter selection in existing algorithms, the merging of two levels is used to iteratively detect the final communities with the idea of modularity optimization. Finally, experiments show that the normalized mutual information values are increased by an average of 8.06% and 5.94% on two scales of synthetic networks and real-world networks with real communities, and modularity is increased by an average of 0.80% on the real-world networks without real communities.

네트워크세계의 산업: 산업의 세계화와 국지화 (Industry in a Networked World: Globalization and Localization of Industry")

  • 박삼옥
    • 대한지리학회지
    • /
    • 제37권2호
    • /
    • pp.111-130
    • /
    • 2002
  • 본 연구는 한국기업의 혁신네트워크와 지식획득과정을 분석하고 이들의 공간적 차원을 이해하는데 그 목적이 있다. 혁신네트워크에서 하도급기업에게는 모기업이 중요하지만 일반 기업의 경우는 공급업체, 고객업체. 경쟁기업 등과의 교류가 상대적으로 중요하게 나타난다 그러나 앞으로 혁신네트워크는 정부출연연구소. 대학 등의 기관이 더욱 중요해지는 한편 해외기업과의 네트워크도 더욱 중시될 것으로 예상된다. 혁신과 관련하여 형식적 지식을 획득하는 것은 어느 정도 공간의 제약을 초월하여 이루어질 수 있지만, 암묵적 지식은 사내연구개발부서에서의 토론과 연구, CEO나 실무자의 개인적 네트워크, 공급업체와 고객업체와의 기업간 관계를 통해서 얻는 경우가 많아서 공간적 근접성이 중시된다. 전반적으로. 혁신네트워크는 수도권과 지방, 공단입지와 일반입지에 따라 상당한 차이를 보이고 있으며. 이는 앞으로 지역발전을 위한 지역산업혁신정책은 지역의 특성에 따라 달리 추진되어야 함을 나타낸다 마지막으로 본 연구결과를 토대로 몇 가지 정책적 시사점을 제시하였다.