• Title/Summary/Keyword: Complex modulus

Search Result 235, Processing Time 0.02 seconds

Rheological Behavior of Sweet Potato Starch-Glucose Composites

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.417-420
    • /
    • 2008
  • Rheological properties of sweet potato starch (SPS)-glucose composites (5%, w/w) at different concentrations (0, 10, 20, and 30%, w/w) of glucose were investigated in steady and dynamic shear. The steady shear rheological properties of SPS-glucose composites were determined from rheological parameters for power law and Casson flow models. At $25^{\circ}C$ all the samples showed a pronounced shear-thinning behaviors (n=0.29-0.37) with high Casson yield stress. In general, the presence of glucose resulted in the decrease in consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$). Storage (G') and loss (G") moduli increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}*$) decreased. Dynamic moduli (G', G", and ${\eta}*$) of the SPS-glucose composites at higher glucose concentrations (20 and 30%) were higher than those of the control (0% glucose) and also increased with increasing glucose concentration from 10 to 30%. The effect of glucose on steady and dynamic shear rheological properties of the SPS pastes appears to greatly depend on glucose concentration in the range of 10-30%.

Determination of Specimen Geometry for Identification of the Complex Modulus of Viscoelastic Materials (점탄성재료의 복소탄성계수 규명을 위한 시편 크기의 결정)

  • Kang, Kee-Ho;Sim, Song;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.133-138
    • /
    • 1991
  • 일반적으로 고무를 비롯한 점탄성재료는 형상 및 크기를 적절히 조절함으로 써 한 방향 이상으로의 원하는 스프링상수를 얻을 수 있으며, 금속에 비하여 내부 마찰에 의한 에너지 발산이 매우 크기 때문에 강제 진동시의 진폭저감 및 충격에 따른 자유진동의 감쇠에 널리 이용되고 있다. 이와 같은 진동감쇠 에 점탄성재료를 효과적으로 사용하기 위해서는 복소탄성계수 즉, 탄성계수 와 손실계수를 정확하게 알아내는 것이 필요하다. 점탄성재료의 복소탄성계 수는 주파수, 온도 및 변형률등에 따라 변하므로 이와 같은 사용조건의 함수 로 구해야 한다. 복소탄성계수를 실험적으로 구하는 방법은 여러가지가 있으 며 실험의 용이성과 관심대상에 따라 적절한 방법을 선택하게 된다. 본 연구 에서는 주파수변화에 따른 복소탄성계수를 임피던스법으로 집중질량 모형을 이용하여 구하려고 할 때, 실험데이타로부터 보다 정확한 결과를 얻기 위하 여 적절한 시편의 크기를 결정하는 방법을 제시하고자 한다. 이를 위해서 시 편내의 파동전달효과와 포아송비와 관련된 양단제한효과 그리고 정하중시 압축변형에 대한 시편의 좌굴등을 고려하여 이론적으로 해석하였으며 실험 적으로도 검증하였다.

  • PDF

Stability and Rheology of Cream Containing Sopoongsan (소풍산을 첨가한 크림의 안정성 및 물성 변화)

  • An, Bong-Jeun;Lee, Jin-Young;Lee, Chang-Eon;Son, Jun-Ho;Park, Jung-Mi;Park, Tae-Soon
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.404-410
    • /
    • 2005
  • Sopoongsan is an oriental medicinal composition including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, antimicrobial, anti-allergic, and anticancer effects on human skin. The results of stability test showed that the creams containing Sopoongsan extracts were very stable at both accelerated temperature conditions and sun-light. And pH and viscosity of each cream did not change greatly for 56 days. From the particle size and rheological measurements, it can be known that when the amount of the Sopoongsan extracts increases, the mean value of particle size decreases, and the value of the complex modulus and loss angle increases, which means the Sopoongsan extracts help stabilize the emulsion. From the result of human patch test to assess the safety of cream containing Sopoongsan extracts, there was no stimulus of negative reaction on skin. In result of the user tests, it can be known that the higher concentration of the Sopoongsan was preferred by customers.

모발(毛髮)의 Carotinoid계(係) 색소(色素) 염색(染色)에서 Chitosan 처리순서(處理順序)가 모발(毛髮)의 염색성(染色性)과 역학적(力學的) 특성(特性)에 미치는 영향(影響)

  • Kim, Kyung-Sun;Jeon, Dong-Won;Kim, Jong-Jun;Ahn, Byung-Tae
    • Journal of Fashion Business
    • /
    • v.11 no.5
    • /
    • pp.79-89
    • /
    • 2007
  • The effect of chitosan treatment on the dyeing and dye fastness, and mechanical properties of hair was investigated in this study when the carotinoid dyestuffs extracted from African Marigold(Tagetes erecta L.) were applied to the hair. The sequences of the chitosan treatment were changed in dyeing and mordanting procedures, i.e., pre-treatment, mid-treatment, and post-treatment. While the effect of chitosan application on the color shade change was not significant, the pre-treatment of the chitosan increased the dye uptake. Discoloration and fading was observed in the lightfastness test when chitosan was mid-treated. Alkali perspiration and acid perspiration fastness test results showed that chitosan post-treatment gave lower tendency. Washing fastness results showed that chitosan post-treatment and mid-treatment gave lower values, which indicates that chitosan deters the direct formation of insoluble complex among fiber-dyestuff-mordant. In the mechanical characteristics results, however, initial modulus and breaking strength increased significantly in the post-treatment and pre-treatment of chitosan.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

A hybrid MC-HS model for 3D analysis of tunnelling under piled structures

  • Zidan, Ahmed F.;Ramadan, Osman M.
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.479-489
    • /
    • 2018
  • In this paper, a comparative study of the effects of soil modelling on the interaction between tunnelling in soft soil and adjacent piled structure is presented. Several three-dimensional finite element analyses are performed to study the deformation of pile caps and piles as well as tunnel internal forces during the construction of an underground tunnel. The soil is modelled by two material models: the simple, yet approximate Mohr Coulomb (MC) yield criterion; and the complex, but reasonable hardening soil (HS) model with hyperbolic relation between stress and strain. For the former model, two different values of the soil stiffness modulus ($E_{50}$ or $E_{ur}$) as well as two profiles of stiffness variation with depth (constant and linearly increasing) were used in attempts to improve its prediction. As these four attempts did not succeed, a hybrid representation in which the hardening soil is used for soil located at the highly-strained zones while the Mohr Coulomb model is utilized elsewhere was investigated. This hybrid representation, which is a compromise between rigorous and simple solutions yielded results that compare well with those of the hardening soil model. The compared results include pile cap movements, pile deformation, and tunnel internal forces. Problem symmetry is utilized and, therefore, one symmetric half of the soil medium, the tunnel boring machine, the face pressure, the final tunnel lining, the pile caps, and the piles are modelled in several construction phases.

Thixotropic Equation and Rheological Parameters on Non-Newtonian Flow Mechanism (비 뉴톤 유동 메카니즘에서 틱소트로피 식과 유변 파라메타)

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.386-393
    • /
    • 2015
  • The rheological properties of complex materials such as colloid dispersion show complicated non-Newtonian flow phenomena when they are subjected to shear flow. These flow properties are controlled by the characteristics of flow units and the interactions among the flow segments. The rheological parameters of relaxation time $({\beta}_2)_0$, structure factor $C_2$ and shear modulus $X_2/{\alpha}_2$ for various thixotropic flow curves was obtained by applying thixotropic equation to flow curves. The variations of rheological parameters are directly related to non-Newtonian flows, viscosities and activation energies of flow segments.

Rheology of Decamethylceclopentasiloxane (cyclomethicone) W/O Emulsion System

  • Choi, Min-Hyung;Jeong, So-Ra;Nam, Sang-In;Shim, Sang-Eun;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.943-949
    • /
    • 2009
  • A highly dispersed W/O emulsion of silicone oil (cyclomethicone)/water system was prepared with a nonionic surfactant. The surface and interfacial tension between the oil and water were characterized in terms of the droplet size distribution and viscosity change of the emulsion. When the dispersed phase concentration was relatively high, the viscosity of the emulsion was rapidly increased and the droplet size of the emulsion was decreased. The rheological behavior of the emulsion system showed non-Newtonian and shear thinning phenomena depending upon the content of the dispersed phase. The droplet size of the emulsion was decreased with increasing surfactant content and water concentration. The relative viscosity of the emulsion was better predicted with the Choi-Schowalter model than with the Taylor model. The value of the complex modulus increased with increasing surfactant concentration. The linear viscoelastic region was expanded with a dispersed phase concentration. According to the change in the viscosity, the behavior was classified into three distinct regions: [I] linear viscoelastic, [II] partially viscoelastic, and [III] viscous. The creep/recovery behaviors in each region were characterized.

Study on the Development of Cosmetic Emulsion Cream for Patients with Atopic Dermatitis using Scutellaria Baicalensis (황금(黃芩)을 이용한 아토피성 피부용 한방화장품 제형화에 관한 연구)

  • Park, Chan-Ik
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.47-53
    • /
    • 2006
  • Objectives : This study was conducted to determine if Scutellaria baicalensis can be used in cosmetic emulsion cream for patients with atopic dermatitis. Methods : Scutellaria baicalensis extract was obtained with the use of butylene glycol through the pressurized solvent extraction(PSE). The antioxidative activity was assessed through SOD-like activity measurement and skin irritating potential was tested using human patch test. Antimicrobial activity was measured by the clear zone formed against Staphylococcus aureus and Escherichia coli and the rheological effects on the emulsion creams were examined using oscillation test. Results : The SOD-like activity increased dose-dependently and was about 90% at 1,000ppm of Scutellaria baicalesis extract. And Scutellaria baicalensis extract did not show any potential to be irritating to the human skin, but it could not be used as an antimicrobial agent for its poor antimicrobial activity against Staphylococcus aureus. The complex modulus decreased by 1,000 pascals and the loss angle also decreased by 20% with the addition of Scutellaria baicalensis extract into the cosmetic emulsion creams, that is, the extract can confer more elastic property on the vehicle. Conclusion : From those results, Scutellaria baicalensis extract can be effectively used as an antioxidant and reinforces the elastic skincare film formed by the application of cream for patients with atopic dermatitis.

  • PDF

Grain Size Effect on Mechanical Properties of Polycrystalline Graphene

  • Park, Youngho;Hyun, Sangil;Chun, Myoungpyo
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.375-378
    • /
    • 2016
  • Characteristics of nanocrystalline materials are known substantially dependent on the microstructure such as grain size, crystal orientation, and grain boundary. Thus it is desired to have systematic characterization methods on the various nanomaterials with complex geometries, especially in low dimensional nature. One of the interested nanomaterials would be a pure two-dimensional material, graphene, with superior mechanical, thermal, and electrical properties. In this study, mechanical properties of "polycrystalline" graphene were numerically investigated by molecular dynamics simulations. Subdomains with various sizes would be generated in the polycrystalline graphene during the fabrication such as chemical vapor deposition process. The atomic models of polycrystalline graphene were generated using Voronoi tessellation method. Stress strain curves for tensile deformation were obtained for various grain sizes (5~40 nm) and their mechanical properties were determined. It was found that, as the grain size increases, Young's modulus increases showing the reverse Hall-Petch effect. However, the fracture strain decreases in the same region, while the ultimate tensile strength (UTS) rather shows slight increasing behavior. We found that the polycrystalline graphene shows the reverse Hall-Petch effect over the simulated domain of grain size (< 40 nm).