• Title/Summary/Keyword: Complex geometry

Search Result 757, Processing Time 0.034 seconds

Unleashing the Power of Undifferentiated Induced Pluripotent Stem Cell Bioprinting: Current Progress and Future Prospects

  • Boyoung Kim;Jiyoon Kim;Soah Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.38-50
    • /
    • 2024
  • Induced pluripotent stem cell (iPSC) technology has revolutionized various fields, including stem cell research, disease modeling, and regenerative medicine. The evolution of iPSC-based models has transitioned from conventional two-dimensional systems to more physiologically relevant three-dimensional (3D) models such as spheroids and organoids. Nonetheless, there still remain challenges including limitations in creating complex 3D tissue geometry and structures, the emergence of necrotic core in existing 3D models, and limited scalability and reproducibility. 3D bioprinting has emerged as a revolutionary technology that can facilitate the development of complex 3D tissues and organs with high scalability and reproducibility. This innovative approach has the potential to effectively bridge the gap between conventional iPSC models and complex 3D tissues in vivo. This review focuses on current trends and advancements in the bioprinting of iPSCs. Specifically, it covers the fundamental concepts and techniques of bioprinting and bioink design, reviews recent progress in iPSC bioprinting research with a specific focus on bioprinting undifferentiated iPSCs, and concludes by discussing existing limitations and future prospects.

A Study on Application of 2-Dimensional Flow Models to Inundation on Underground Space System (지하공간 침수해석을 위한 2차원 흐름모형의 적용성 검토)

  • Kwak, Sunghyun;Lee, Kyungsu;Rhee, Dong Sop;Lyu, Siwan
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.78-84
    • /
    • 2015
  • In order to increase the utilization of limited space in urban area, it can be a good solution to make use of underground space. For the last few decades, underground space systems, such as underground passages, subway stations, and underground shopping arcades, have been constructed in many cities all over the country. Despite of the advantages on the utilization of space in urban area, underground space systems have always been exposed to the risk of inundations resulted from severe rain storms. In this study, it has been examined to apply 2-D flow models (TUFLOW and FLUMEN) to establishing the preventive measures to the risk of flood. For the part with relatively complex configuration, such as a corridor junction, 2-D flow models present the detailed information about the effect of geometry on the inundation events and the temporal and spatial distribution of inundation over the space. From the result, it can be concluded that the 2-D flow model can be the effective implement for establishing the proper measure to the inundation on underground space systems, which generally have relatively long and narrow geometry with complex inner configuration.

Ultrasonic Flaw Detection of Turbine Blade Roots (터빈 동익 Root부 초음파 탐상)

  • Jung, H.K.;Chung, M.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.24-30
    • /
    • 1993
  • The necessity of ultrasonic inspection to detect the cracks in turbine blade is being increased as the forced outage of nuclear power plants have been occurred due to blade failure in turbine components. However, the complex blade root geometry causes the ultrasonic inspection technique not to be established yet and much effort is required to set up a more reliable inspection. In this paper, the ultrasonic inspection technique for flaw detectability, skew angle effect, identification of flaw and geometric signal have been investigated with a test block and discussed the interpretation of ultrasonic signal through the acquisition and analysis of RF waveform. The experimental results show that the proper examination procedure can be established. It is required that the skew angle is essential to decrease the effect of signals from the complex blade geometry. The present results of this study can be applied to the site inspection without blade disassembly.

  • PDF

Damage Tolerance Analysis Using Surrogate Model (근사모델을 사용한 손상허용해석)

  • Jang, Byung-Wook;Im, Jae-Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.306-313
    • /
    • 2011
  • The damage tolerance analysis is required to guarantee the structural safety and the reliability for aircraft components. The damage tolerance method, which evaluate the life considering the initial crack, considers a fatigue design model of the aircraft main structure. The fatigue crack growth life should be calculated in damage tolerance analysis and the inspection time to define the replacement cycle. In this paper, the damage tolerance analysis is performed for a turbine wheel which has complex geometry. The equation of the stress intensity factor for complex geometry is hard to know, so that they are usually processed by finite element analysis which takes long time. To solve this problem, the stress intensity factors at specified crack are obtained by the FEA and the crack growth life is evaluated using the surrogate model which is generated by the regression analysis of the FEA data. From the results, the efficiency of the crack growth life calculation and the damage tolerance analysis could be increased by taking the surrogate model.

Preparation and crystal structure of azido bridged one-dimensional polymeric cadmium(II) complex, [Cd(N3)2(2-ethylimidazole)2]

  • Suh, Seung Wook;Kim, Inn Hoe;Kim, Chong-Hyeak
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.391-395
    • /
    • 2005
  • The title complex, $[Cd(N_3)_2(2-ethylimidazole)_2]$, I, has been prepared and characterized by X-ray single crystallography. The complex I crystallizes in the monoclinic system, Cc space group with a = 16.200(3), b = 12.926(3), $c=7.007(1){\AA}$, ${\beta}=102.29(3)^{\circ}$, $V=1433.7(5){\AA}^3$, Z = 4, $R_1=0.0239$ and ${\omega}R_2=0.0604$ for 1874 independent reflections. Cd(II) atom has a slightly distorted octahedral coordination geometry, with four end-on (${\mu}-1$,1) bridging azido ligands and two 2-ethylimidazole ligands bonding through nitrogen atom. The central cadmium(II) atoms are run in parallel to the c-axis and are doubly bridged with neighboring cadmium(II) atoms by the end-on (${\mu}-1$,1) bridging azido ligands. Thus, this complex has a one-dimensional zigzag chain structure in which the 2-ethylimidazole is in the cis conformation.

One-Pot Reaction Involving Two Different Amines and Formaldehyde Leading to the Formation of Poly(Macrocyclic) Cu(II) Complexes

  • Lee, Yun-Taek;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2517-2522
    • /
    • 2012
  • New polynuclear poly(hexaaza macrocyclic) copper(II) complexes $[1](ClO_4)_{2n}{\cdot}(H_2O)_{2n}$, $[2](ClO_4)_{2n}{\cdot}(H_2O)_{2n}$, and $[3](ClO_4)_{2n}{\cdot}(H_2O)_{2n}$ have been prepared by the one-pot reaction of formaldehyde with ethylenediamine and 1,2-bis(2-aminoethoxy)ethane, 1,3-diaminopropane, or 1,6-diaminohexane in the presence of the metal ion. The polymer complexes contain fully saturated 14-membered hexaaza macrocyclic units (1,3,6,8,10,13-hexaazacyclotetradecane) that are linked by $N-(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2-N$, $N-(CH_2)_3-N$, or $N-(CH_2)_6-N$ chains. The mononuclear complex $[Cu(H_2L^5)](ClO_4)_4$ ($H_2L^5$ = a protonated form of $L^5$) bearing two $N-(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2-NH_2$ pendant arms has also been prepared by the metal-directed reaction of ethylenediamine, 1,2-bis(2-aminoethoxy)ethane, and formaldehyde. The polymer complexes were characterized employing elemental analyses, FT-IR and electronic absorption spectra, molar conductance, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron micrograph (SEM). Electronic absorption spectra of the complexes show that each macrocyclic unit of them has square-planar coordination geometry with a 5-6-5-6 chelate ring sequence. The polymer complexes as well as $[Cu(H_2L^5)]^{4+}$ are quite stable even in concentrated $HClO_4$ solutions. Synthesis and characterization of the polynuclear and mononuclear copper(II) complexes are reported.

Crystal Structure, Fluorescence Property and Theoretical Calculation of the Zn(II) Complex with o-Aminobenzoic Acid and 1,10-Phenanthroline

  • Zhang, Zhongyu;Bi, Caifeng;Fan, Yuhua;Zhang, Xia;Zhang, Nan;Yan, Xingchen;Zuo, Jian
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1697-1702
    • /
    • 2014
  • A novel complex [$Zn(phen)(o-AB)_2$] [phen: 1,10-phenanthroline o-AB: o-aminobenzoic acid] was synthesized and characterized by elemental analysis and X-ray diffraction single-crystal analysis. The crystal crystallizes in monoclinic, space group P2(1)/c with $a=7.6397(6){\AA}$, $b=16.8761(18){\AA}$, $c=17.7713(19){\AA}$, ${\alpha}=90^{\circ}$, ${\beta}=98.9570(10)^{\circ}$, ${\gamma}=90^{\circ}$, $V=2.2633(4)nm^3$, Z = 4, F(000) = 1064, S = 1.058, $Dc=1.520g{\cdot}cm^{-3}$, $R_1=0.0412$, $wR_2=0.0948$, ${\mu}=1.128mm^{-1}$. The Zn(II) is six coordinated by two nitrogen and four oxygen atoms from the 1,10-phenanthroline and o-aminobenzoic acid to furnish a distorted octahedron geometry. The complex exhibits intense fluorescence at room temperature. Theoretical studies of the title complex were carried out by density functional theory (DFT) B3LYP method. CCDC: 898291.

Preparation and Crystal Structures of Silver(I), Mercury(II), and Lead(II) Complexes of Oxathia-Tribenzo-Macrocycles

  • Siewe, Arlette Deukam;Ju, Huiyeong;Lee, Shim Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.725-730
    • /
    • 2013
  • An investigation of the coordination behavior of sulfur-containing mixed-donor tribenzo-macrocycles $L^1-L^3$ ($L^1$: 20-membered $O_3S_2$, $L^2$: 20-membered $O_2S_3$, and $L^3$: 23-membered $O_4S_2$) with $d^{10}$-metal ($Ag^+$, $Hg^{2+}$, and $Pb^{2+}$) salts is reported. The X-ray structures of five complexes (1-5) with different structural types and stoichiometries, including mono- to dinuclear species have been determined. Reactions of $L^2$ and $L^3$ with the silver(I) salts ($PF_6{^-}$ and $SCN^-$) afforded two dinuclear 2:2 (metal-to-ligand) complexes with different arrangements: a sandwich-type cyclic dinuclear complex $[Ag_2(L^2)_2](PF_6)_2{\cdot}3CH_2Cl_2$ (1) and a linear dinuclear complex $[Ag_2(L^3)_2(SCN)_2]$ (2), in which two monosilver(I) complex units are linked by an Ag-Ag contact. Reactions of $L^1$ and $L^2$ with mercury(II) salts ($SCN^-$ and $Cl^-$) gave a mononuclear 1:1 complexes $[Hg(L^1)(SCN)_2]$ (3) and $[Hg(L^2)Cl_2]$ (4) with anion coordination in both cases. $L^2$ reacts with lead(II) perchlorate to yield a mononuclear sandwich-type complex $[Pb(L^2)_2(ClO_4)_2]$ (5), giving an overall metal coordination geometry of eight with a square antiprism arrangement. From these results, the effects of the donor variation and the anioncoordination ability on the resulting topologies of the soft metal complexes are discussed.

Two New closo- or nido-Carborane Diphosphine Complexes: Synthesis, Characterization and Crystal Structures

  • Kong, Lingqian;Zhang, Daopeng;Su, Fangfang;Li, Dacheng;Dou, Jianmin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2249-2252
    • /
    • 2011
  • Two new carborane complexes containing closo- or nido-carborane diphosphine ligands with the formula: complex $[Hg(7,8-(PPh_2)_2-7,8-C_2B_9H_{10})_2]$ $CH_2Cl_2$ (1) and $[Ag_2({\mu}-Cl)_2(1,2-(P^iPr_2)_2-1,2-C_2B_{10}H_{10})_2]$ (2) have been synthesized and characterized by elemental analysis, 1H and 13C NMR spectroscopy and X-ray structure determination. The X-ray structure analyses revealed that the carborane diphosphine ligand was degraded from closo-1,2-$(PPh_2)_2-1,2-C_2B_{10}H_{10}$ to nido-[$7,8-(PPh_2)_2-7,8-C_2B_9H_{10}]^-$ in complex 1, while the closo nature of the starting ligand $1,2-(P^iPr_2)_2-1,2-C_2B_{10}H_{10}$ was retained in complex 2. In either of the two complexes, the carborane diphosphine ligand was coordinated bidentately to the Hg(II) or Ag(I) center through its two phosphorus atoms, therefore forming a five-member cheating ring between the carborane ligand and the metal center. The coordination geometry of the metal atom is distorted tetrahedron formed by $P_4$ unit in complex 1 and $P_2Cl_2$ unit in complex 2, respectively.

Synthesis, Characterization and Property Studies on a Dinuclear Copper(II) Complex with Dipyridine Derivate and Acetylacetone

  • Zhao, Pu Su;Guo, Zhi Yan;Sui, Jing;Wang, Jing;Jian, Fang Fang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.49-52
    • /
    • 2011
  • A dinuclear copper(II) complex of [$Cu_2(aceace)_4$(dipyph)] [aceace = acetylacetone, dipyph = 1,4-di(4-pyridylethene-2-yl-)benzene] has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction. It crystallizes in the monoclinic system, space group P21/c, with lattice parameters a = 7.9584(16) $\AA$, b = 18.594(4) $\AA$, c = 15.063(4) $\AA$ $\beta=120.97(2)^o$ and $M_r$ = 807.85 ($C_{40}H_{44}Cu_2N_2O_8$), Z = 2. Each of the $Cu^{2+}$ ion adopts a square pyramid geometry and coordinates with four oxygen atoms from two aceace ligands and one nitrogen atom from dipyph bidentate ligand. Magnetic measurement shows that the Weiss constant and Curie constant for the title compound are -0.22 K and 0.1154 emu K/mol, respectively. Thermal stability data indicate that the title complex undergoes two steps decomposition and the residue is $Cu_2O_4$. In the potential range of -1.5 ~ 0.8 V, the title complex represents an irreversible electrochemical process.