• 제목/요약/키워드: Complex behavior

검색결과 2,032건 처리시간 0.028초

3CaO.$Al_2O_3$의 수화반응에 미치는 글루콘산나트륨읨 영향(I) -흡착거동- (Ettect of Sodium Gluconate on the Hydration of 3CaO.$Al_2O_3$(I)-Adsorption Behavior-)

  • 김창은;이승헌;유종석;최진호
    • 한국세라믹학회지
    • /
    • 제23권2호
    • /
    • pp.38-42
    • /
    • 1986
  • The adsorption behavior of 3CaO.$Al_2O_3$-sodium gluconate-$H_2O$ system by measuring adsorp-tion isotherm DTA and IR sepctra. The adsorbed amount of sodium gluconate on 3CaO.$Al_2O_3$ is exceedingly larger than 3CaO.$SiO_2$ and portland cement. From the DAT experiment the formation of complex is observed by the characteristic exothermic peak of the complex at 45$0^{\circ}C$ It is now strong deduced that the chemical bonding between gluconate anion and 3CaO.$Al_2O_3$ should be coordinative due to the complex formation on the surface 3CaO.$Al_2O_3$ from the IR spectra of sod-ium gluconate only and 3CaO.$Al_2O_3$ -sodium gluconate-$H_2O$.

  • PDF

Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes

  • Tian, Li-Min;Hao, Ji-Ping
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1197-1214
    • /
    • 2015
  • There is a great difference in mechanical behavior between design model one-time loading and step-by-step construction process. This paper presents practical computational methods for simulating the structural behavior of long-span rigid steel structures during construction processes. It introduces the positioning principle of node rectification for installation which is especially suitable for rigid long-span steel structures. Novel improved nonlinear analytical methods, known as element birth and death of node rectification, are introduced based on several calculating methods, as well as a forward iteration of node rectification method. These methods proposed in this paper can solve the problem of element's 'floating' and can be easily incorporated in commercial finite element software. These proposed methods were eventually implemented in the computer simulation and analysis of the main stadium for the Universiade Sports Center during the construction process. The optimum construction scheme of the structure is determined by the improved algorithm and the computational results matched well with the measured values in the project, thus indicating that the novel nonlinear time-varying analysis approach is effective construction simulation of complex rigid long-span steel structures and provides useful reference for future design and construction.

오스뮴-쿠페론의 전기화학적 행동 및 응용 (Electrochemical behavior and Application of Osmium-Cupferron Complex)

  • 권영순;정미영
    • 분석과학
    • /
    • 제16권3호
    • /
    • pp.198-205
    • /
    • 2003
  • 쿠페론은 nitrosophenylhydroxylamine의 ammonium salt로서 흡착촉매 벗김법 (AdCtSV)에서 리간드의 역할을 하고 동시에 촉매 역할을 한다고 알려져 있다. 순환 전압전류법을 이용하여, 1 mM 인산염 완충용액에서 오스뮴-쿠페론 착물의 전기화학적 행동을 살펴보았다. 오스뮴 정량의 최적 조건은 1 mM 인산염 완충용액 (pH 6.0), 0.1 mM 쿠페론의 용액에서 주사속도는 100 mV/s 이었다. 이 조건에서 농도 변화에 따른 선형 주사 전압곡선의 환원 봉우리 전류변화를 이용하여 얻은 오스뮴의 검출 한계 ($3{\sigma}$)는 $1.0{\times}10^{-7}M$이다.

육류에 대한 태도와 소비행동에 영향을 미치는 요인들의 인과관계 평가 (Measuring the Causal Relationship among Factors Influencing Attitude toward Meat and Consumption Behavior)

  • 강종헌;정항진
    • 한국식생활문화학회지
    • /
    • 제23권3호
    • /
    • pp.328-335
    • /
    • 2008
  • The objective of this study was to evaluate the causal relationships among environmental belief, ambivalence, subjective norm, attitude and meat consumption behavior. A total of 318 questionnaires were completed. A structural equation model was employed to assess the causal effects of constructs. The results of the study demonstrated that the structural analysis results for the data also indicated excellent model fit. The effects of environmental belief, ambivalence, and subjective norm on attitude were statistically significant. The effects of environmental belief, subjective norm and attitude on meat consumption were statistically significant. The effects of attitude on intention were statistically significant. As had been expected, intention exerted a significant effect on meat consumption. Moreover, environmental belief and ambivalence exerted significant indirect effects on meat consumption through attitude. Subjective norm exerted a significant indirect effect on meat consumption through attitude and intention. Subjective norm also exerted a significant indirect effect on intention through attitude. In developing and testing conceptual models which integrate the relationship among behavioral belief, attitude variable, behavioral intention and meat consumption, this study may approach a deeper understanding of the complex relationship among meat consumption behavior-related variables. Greater understanding of the complex relationship among meat consumption behavior-related variables can improve the practical or managerial diagnosis of the problem and opportunities for different marketing strategies including meat production and meat product development and marketing communication.

Voxel mesh 기법을 이용한 하악골의 유한요소모델링 (Finite element modeling of the mandible using voxel mesh method)

  • 이은택;오택열;변창환;이병권;유용석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.600-604
    • /
    • 1997
  • Knowledge of the complex biomechanical behavior of the human mandible is of great importance in various clinical situations. Various approaches can be used to evaluate the physical behavior of bone. In this study, we developed the voxel mesh program(Bionix) and generated FE models of mandible using Bionix and using handmade work and compared them with free vibration results derived from finite element analysis(FEA). The data of FE models based on DICOM File exported from Computed tomography(CT). Comparing the two models, we found a good correlation about mode type and natural frequency. The voxel based finite element mesh is a valid and accurate method to predict parameters of the complex biomechanical behavior of human mandibles.

  • PDF

Dynamic behavior of pergola bridge decks of high-speed railways

  • Ugarte, Jokin;Carnerero, Antonio;Millanes, Francisco
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.91-103
    • /
    • 2017
  • This paper analyzes the dynamic behavior of the deck of pergola bridges affected by moving loads, specifically high-speed trains. Due to their characteristic advantages, pergola bridges have become a widely used structural typology on high-speed railways. In spite of such wide-spread use, there are few technical bibliographies published in this field. The first part of this paper develops a simple analytical methodology to study the complex dynamic behavior of these double dimensional structures. The second part compares the results obtained by the proposed formulae and the dynamic response obtained with different and gradually more complex FE models. The results obtained by the analytical model are in close agreement with those obtained by the FE models, demonstrating its potential application in the early design stages of this kind of structure.

Crowdsourced Urban Sensing: Urban Travel Behavior Using Mobile Based Sensing

  • Shin, Dongyoun
    • Architectural research
    • /
    • 제20권4호
    • /
    • pp.109-120
    • /
    • 2018
  • In the context of ever-faster urbanization, cities are becoming increasingly complex, and data collection to understand such complex relationships is becoming a very important factor. This paper focuses on the lighter weight of the method of collecting urban data, and studied how to use such complementary data collection using crowdsourcing. Especially, the method of converting mobile acceleration sensor information to urban trip information by combining with locational information was experimented. Using the parameters for transportation type classification obtained from the research, information was obtained and verified in Singapore and Zurich. The result of this study is thought to be a good example of how to combine raw data into meaningful behavior information.

Numerical simulation of complex hexagonal structures to predict drop behavior under submerged and fluid flow conditions

  • Yoon, K.H.;Lee, H.S.;Oh, S.H.;Choi, C.R.
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.31-44
    • /
    • 2019
  • This study simulated a control rod assembly (CRA), which is a part of reactor shutdown systems, in immersed and fluid flow conditions. The CRA was inserted into the reactor core within a predetermined time limit under normal and abnormal operating conditions, and the CRA (which consists of complex geometric shapes) drop behavior is numerically modeled for simulation. A full-scale prototype CRA drop test is established under room temperature and water-fluid conditions for verification and validation. This paper describes the details of the numerical modeling and analysis results of the several conditions. Results from the developed numerical simulation code are compared with the test results to verify the numerical model and developed computer code. The developed code is in very good agreement with the test results and this numerical analysis model and method may replace the experimental and CFD method to predict the drop behavior of CRA.

Isogeometric analysis of the seismic response of a gravity dam: A comparison with FEM

  • Abdelhafid Lahdiri;Mohammed Kadri
    • Advances in Computational Design
    • /
    • 제9권2호
    • /
    • pp.81-96
    • /
    • 2024
  • Modeling and analyzing the dynamic behavior of fluid-soil-structure interaction problems are crucial in structural engineering. The solution to such coupled engineering systems is often not achievable through analytical modeling alone, and a numerical solution is necessary. Generally, the Finite Element Method (FEM) is commonly used to address such problems. However, when dealing with coupled problems with complex geometry, the finite element method may not precisely represent the geometry, leading to errors that impact solution quality. Recently, Isogeometric Analysis (IGA) has emerged as a preferred method for modeling and analyzing complex systems. In this study, IGA based on Non-Uniform Rational B-Splines (NURBS) is employed to analyze the seismic behavior of concrete gravity dams, considering fluid-structure-foundation interaction. The performance of IGA is then compared with the classical finite element solution. The computational efficiency of IGA is demonstrated through case studies involving simulations of the reservoir-foundation-dam system under seismic loading.