• Title/Summary/Keyword: Complex Terrain

Search Result 332, Processing Time 0.032 seconds

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu;G Vinayagamurthy;Ajay Kumar T M;Selvirajan S
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.287-300
    • /
    • 2022
  • Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.

A Study on Modification of Geographical Features Affecting Onset of Sea Breeze (지형적 특징이 해풍시작에 미치는 영향에 대한 연구)

  • 정우식;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.757-772
    • /
    • 2003
  • We simulate the geographical effects on the onset time of sea breeze at Suyoung and Haeundae districts by using the LCM (Local Circulation Model). The following can be found out from the numerical simulation on Case I (real terrain) which considered the real geography of Busan metropolitan area. Especially, as a result of analyzing the land breeze path, it could be found along the coastline as it flows out through low land coastal area. To find out more about the effects of terrain and geography on the onset time of sea breeze, the results of numerical simulation of virtual geography are as follows. In Case II (flat terrain), to find out how the terrain slope affects the onset of sea breeze, flat land and the ocean was considered. As a result, convergence of nighttime air mass at a Suyoung area and nighttime strong wind speed phenomenon was not shown. In Case III (modified flat terrain), to find out the effects of the irregularity of coastline affecting the onset of sea breeze, numerical simulation was carried out by simplifying the complex coastline into segments of straight coastline. So land breeze system and changing process of sea breeze after sunrise at Suyoung and Haeundae was simulated almost in a similar manner. Through this we could find the effects of coastal irregularities on onset of sea breeze.

The Construction of Digital Terrain Models by a Triangulated Irregular Network (비정규삼각망 데이타구조에 의한 수치지형모델의 구성)

  • 이석찬;조규전;이창경;최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 1990
  • A regular grid or a triangulated irregular network is generally used as the data structure of digital terrain models. A Regular grid is simple and easy to manipulate, but it can't describe well terrain surface features and requires vast volumes of data. In the meantime, a triangulated irregular network has complex data structure, but it can describe well terrain surface features and can achieve the accuracy suitable to its application with relatively little data. This paper aims at the construction of efficient digital terrain models by the improvment of a triangulated irregular network based on Delaunay triangulation. Regular and irregular data set are sampled from existing contour maps, and the efficiency and the accuracy of the two data structures are compared.

  • PDF

Accumulation of Streamflow in Complex Topography by Digital Terrain Models (복잡한 지형에 있어서 디지털 지형모델을 이용한 유출량 계산)

  • 전무갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.47-54
    • /
    • 1996
  • 본 연구에서는 지표면유출과 중간유출의 수문학적과정을 함께 모의발생 시키는 합성 유역모델이 제시되었다. 본 모델은 디지털지형모델과 상호 연결되도록 하였으며 지형이 복잡한 지역에서도 유출이 시간과 공간적으로 누가계산되어 이 분야의 조사연구에 필요한 정보를 제공할 수 있다. 본모델을 이용 유역의 불투수층 위에 분포해있는 토양의 중간계층과 토양수분의 계산 및 침투/용탈의 과정을 모의 발생시킬 수 있다.

  • PDF

Classification of the vegetated terrain using polarimetric SAR processing techniques

  • Park Sang-Eun;Moon Wooil M
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.389-392
    • /
    • 2004
  • Classification of Earth natural components within a full polarimetric SAR image is one of the most important applications of radar polarimetry in remote sensing. In this paper, the unsupervised classification algorithms based on the combined use of the polarimetric processing technique such as the target decomposition and statistical complex Wishart classification method are evaluated and applied to vegetated terrain in Jeju volcanic island.

  • PDF

Wind Resource Assessment of the Antarctic King Sejong Station by Computational Flow Analysis (남극 세종기지의 전산유동해석에 의한 풍력자원평가)

  • Kim, Seok-Woo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.29-35
    • /
    • 2007
  • In accordance with Madrid and Kyoto Protocols, a 10kw wind turbine installed about 625m away from the King Sejong Station in the Antarctica has been in operation successfully. The current location of the wind turbine has different geographic surroundings from the previous candidate site considered in 2005 and that makes re-evaluation of wind resource at the current site including geographic effects necessary. Especially, strong wind flow derived by steep and complex terrain is dominant in the Antarctica so that computational flow analysis is required. The wind rose measured at the previous and current installation location are identical with strong meteorological correlation but prevailing directions of wind power density are different because of local wind acceleration due to complex terrain. Numerical analysis explains which effects brings this discordance between the two sites, and a design guideline required for additional wind turbine installation has been secured.

Comparison of Bin Averaging Method and Least Square Method for Site Calibration (단지교정을 위한 빈평균방법과 최소자승법의 비교)

  • Yoo, Neung-Soo;Nam, Yun-Su;Lee, Jeong-Wan;Lee, Myeong-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.157-164
    • /
    • 2005
  • Two methods, the bin averaging method and least square method, are often used in calibrating wind turbine test sites. The objective of this work was to determine a better method to predict the wind speed at wind turbine installing point. The calibration was done at the test site on a complex terrain located in Daegwallyeong, Korea. It was performed for two different cases based on the IEC 61400-12 power performance measurement standard. The wind speeds averaged for 10 minutes ranged between 4 m/s and 16 m/s. The wind-direction bins of each meteorological mast were 10 degrees apart, and only the bins having data measured for more than 24 hours were employed for the test site calibration. For both cases, the two methods were found to yield almost same results which estimated real wind speed very closely.

  • PDF

Numerical Study on Surface Data Assimilation for Estimation of Air Quality in Complex Terrain (복잡 지형의 대기질 예측을 위한 지상자료동화의 효용성에 관한 수치연구)

  • 이순환;김헌숙;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.523-537
    • /
    • 2004
  • In order to raise the accuracy of meteorological data, several numerical experiments about the usefulness of data assimilation to prediction of air pollution was carried out. Used data for data assimilation are surface meteorological components observed by Automatical Weather System with high spatial density. The usage of surface data assimilation gives changes of temperature and wind fields and the change caused by the influence of land-use on meterological simulation is more sensitive at night than noon. The data quality in assimilation it also one of the important factors to predict the meteorological field precisely and through the static IOA (Index of Agreement), simulated meteorological components with selected limited surface data assimilation are agree well with observations.

A Study on the Development of Air Pollution Model Applicable to the Complex Terrain (복잡지형에서의 대기순환모델에 관한 연구)

  • Yoon J. Y.;Yi S. C.;Hong M. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.109-116
    • /
    • 1997
  • The objective of this paper is to develop a computational model for the prediction of the pollutant spread from a mass source over a complex terrain. The model comprises a two-dimensional, steady state flow model and a concentration model which employs the results of the computed flow field. The computational model is applied to predict the spread of pollutants for Sanbon city, and the two cases have been compard with the results of SF/sub 6/ trace experiments.

  • PDF

Wind Resource Assessment of the Antarctic King Sejong Station by Computational Flow Analysis (남극 세종기지의 전산유동해석에 의한 풍력자원평가)

  • Kim, Seok-Woo;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.376-377
    • /
    • 2007
  • In accordance with Madrid and Kyoto Protocols, a 10kW wind turbine installed about 625m away from the King Sejong Station in the Antarctica has been in operation successfully. The current location of the wind turbine has different geographic surroundings from the previous candidate site considered in 2005 and that makes re-evaluation of wind resource at the current site including geographic effects necessary. Especially, strong wind flow derived by steep and complex terrain is dominant in the Antarctica so that computational flow analysis is required. The wind rose measured at the previous and current installation location are identical with strong meteorological correlation but prevailing directions of wind power density are different because of local wind acceleration due to complex terrain. Numerical analysis explains which effects brings this discordance between the two sites, and a design guideline required for additional wind turbine installation has been secured.

  • PDF