• Title/Summary/Keyword: Complex Terrain

Search Result 334, Processing Time 0.023 seconds

Wind Resource Assessment of the Antarctic King Sejong Station by Computational Flow Analysis (남극 세종기지의 전산유동해석에 의한 풍력자원평가)

  • Kim, Seok-Woo;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.376-377
    • /
    • 2007
  • In accordance with Madrid and Kyoto Protocols, a 10kW wind turbine installed about 625m away from the King Sejong Station in the Antarctica has been in operation successfully. The current location of the wind turbine has different geographic surroundings from the previous candidate site considered in 2005 and that makes re-evaluation of wind resource at the current site including geographic effects necessary. Especially, strong wind flow derived by steep and complex terrain is dominant in the Antarctica so that computational flow analysis is required. The wind rose measured at the previous and current installation location are identical with strong meteorological correlation but prevailing directions of wind power density are different because of local wind acceleration due to complex terrain. Numerical analysis explains which effects brings this discordance between the two sites, and a design guideline required for additional wind turbine installation has been secured.

  • PDF

Wind energy assessment at complex terrain using mixture probability distribution (혼합확률분포를 이용한 복잡지형의 풍력자원 평가)

  • Song, Ho-Sung;Kwon, Soon-Duck
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.18-27
    • /
    • 2013
  • This paper presents a method for assessing the wind energy potential at complex terrain using probability distribution. And the proper probability models of the parameters estimating the wind energy are presented. Finally a mixture-Weibull determined by numerical methods procedure are proposed to assess the probability distribution of the energy potential at a site. The developed method is applied to the Kwanjungchun Bridge and compared with wind records which the neighboring weather station.

Development of a Three-Dimensional Wind Field Model using the Principle of Variational Method (변분법 원리를 이용한 3차원 바람장 모델 개발)

  • Suh, Kyung-Suk;Kim, Eun-Han;Whang, Won-Tae;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.97-108
    • /
    • 2003
  • A three-dimensional wind field model based on the variational technique has been developed for estimating the overall wind patterns over a complex terrain. The three-dimensional elliptic partial differential equations on Cartesian and terrain-following coordinates have been established to obtain the Lagrangian multiplier and the adjusted wind velocity. The simulations were performed to evaluate the variations of the velocity vectors on the hemisphere, half-cylinder, and saddle type obstacles. Also, the wind field model in the terrain-following coordinate has been applied for evaluating the characteristics of wind patterns according to the variations of Gauss precision moduli on the hemispheric topography. The results showed that the horizontal and vertical wind components were strongly governed by the selection of the values of Gauss precision moduli.

The Determination of Earthwork Volume using LiDAR Data (LiDAR 데이터를 이용한 토공량 산정)

  • Kang Joon-Mook;Yoon Hee-Cheon;Min Kwan-Sik;We Gwang-Jae
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.533-540
    • /
    • 2006
  • In recent years, civil-engineering work is desired the terrain information to be more efficient in earthwork volume calculation. One method for collecting elevation data is LiDAR. Lidar data was used to produce rapidly an accurate digital elevation model of the terrain, compared with the conventional ground surveys, photogrammetty, and remote sensing. Raw Lidar data is combined with GPS positional data to georeference the data sets. Lidar data is edited and processed to generate surface models, elevation models, and contours. Here we can either create a Tin Volume Surface or a Gird Volume Surface. Triangulated Irregular Network(TIN) has complex data structure, but it can describe well terrain surface features. As we have seen, we search the efficiency for earthwork volume calculation using Lidar data. One conclusion we can draw from this study is that Lidar data is more accurate result than digital map in the calculation of earthwork volume.

  • PDF

Development of Mobile 3D Terrain Viewer with Texture Mapping of Satellite Images

  • Kim, Seung-Yub;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.351-356
    • /
    • 2006
  • Based on current practical needs for geo-spatial information on mobile platform, the main theme of this study is a design and implementation of dynamic 3D terrain rendering system using spaceborne imagery, as a kind of texture image for photo-realistic 3D scene generation on mobile environment. Image processing and 3D graphic techniques and algorithms, such as TIN-based vertex generation with regular spacing elevation data for generating 3D terrain surface, image tiling and image-vertex texturing in order to resolve limited resource of mobile devices, were applied and implemented by using graphic pipeline of OpenGL|ES (Embedded System) API. Through this implementation and its tested results with actual data sets of DEM and satellite imagery, we demonstrated the realizable possibility and adaptation of complex typed and large sized 3D geo-spatial information in mobile devices. This prototype system can be used to mobile 3D applications with DEM and satellite imagery in near future.

Prediction of Annual Energy Production of Wind Farms in Complex Terrain using MERRA Reanalysis Data (MERRA 재해석 자료를 이용한 복잡지형 내 풍력발전단지 연간에너지발전량 예측)

  • Kim, Jin-Han;Kwon, Il-Han;Park, Ung-Sik;Yoo, Neungsoo;Paek, Insu
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.82-90
    • /
    • 2014
  • The MERRA reanalysis data provided online by NASA was applied to predict the annual energy productions of two largest wind farms in Korea. The two wind farms, Gangwon wind farm and Yeongyang wind farm, are located on complex terrain. For the prediction, a commercial CFD program, WindSim, was used. The annual energy productions of the two wind farms were obtained for three separate years of MERRA data from June 2007 to May 2012, and the results were compared with the measured values listed in the CDM reports of the two wind farms. As the result, the prediction errors of six comparisons were within 9 percent when the availabilities of the wind farms were assumed to be 100 percent. Although further investigations are necessary, the MERRA reanalysis data seem useful tentatively to predict adjacent wind resources when measurement data are not available.