• Title/Summary/Keyword: Complex System theory

Search Result 417, Processing Time 0.032 seconds

Design of a Fuzzy-Model-Based Controller for Nonlinear Systems (비선형 시스템을 위한 퍼지 모델 기반 제어기의 설계)

  • 주영훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.605-614
    • /
    • 1999
  • This paper addresses analysis and design of a class of complex single-input single-output fuzzy control systems. In the proposed method, the fuzzy model, which represents the local dynamic behavior of the given nonlinear system, is utilized to construct the controller. The overall controller consists of the local compensators which compensate the local dynamic linear model and the feed-forward controller which is designed via sliding mode control theory. Therefore, the globally stable fuzzy controller is designed without finding a common Lyapunov matrix. and shows improved perfonnance and tracking results by taking the advantages of fuzzy-model-based control theory and sliding mode control theory. Furthennore, stability analysis is conducted not Ibr the fuzzy model but for the real underlying nonlinear system. Two numerical examples are included to show the effcctiveness and feasibility of the proposed fuzzy control method.

  • PDF

Dehydrogenation of Ethylalcohol Catalyzed by Alcoholdehydrogenase Under High Pressure

  • Jee Jong-Gi;Shin Jin-Young;Hwang Jung-Ui
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.50-57
    • /
    • 1989
  • A pressure effect of the dehydrogenation of ethylalcohol catalyzed by alcoholdehydrogenase was observed in Tris-HCl buffer, pH 8.8 from $25^{\circ}C$ to $35^{\circ}C$ under high pressure system by using our new theory. The theory makes it possible for us to obtain all rate and equilibrium constants for each step of all enzymatic reaction with a single intermediate. We had enthalpy and volume profiles of the dehydrogenation to suggest a detail and reasonable mechanism of the reaction. In these profiles, both enthalpy and entropy of the reaction are positive and their values decrease with enhancing pressure. It means that the first step is endothermic reaction, and its strength decrease with elevating pressure. At the same time, all activation entropies have large negative values, which prove that not only a ternary complex has a more ordered structure at transition state, but also water molecules make a iceberg close by the activated complex. In addition to this fact, the first and second step equilibrium states are controlled by enthalpy. The first step kinetic state is controlled by enthalpy but the second step kinetic state is controlled by entropy.

A state space method for coupled flutter analysis of long-span bridges

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.491-504
    • /
    • 2002
  • A state-space method is proposed to analyze the aerodynamically coupled flutter problems of long-span bridges based on the modal coordinates of structure. The theory about complex modes is applied in this paper. The general governing equation of the system is converted into a complex standard characteristic equation in a state space format, which contains only two variables. The proposed method is a single-parameter searching method about reduced velocity, and it need not choose the participating modes beforehand and has no requirement for the form of structure damping matrix. The information about variations of system characteristics with reduced velocity and wind velocity can be provided. The method is able to find automatically the lowest critical flutter velocity and give relative amplitudes, phases and energy ratios of the participating modes in the flutter motion. Moreover, the flutter analysis of Jiangyin Yangtse suspension bridge with 1385 m main span is performed. The proposed method has proved reliable in its methodology and efficient in its use.

Energy-saving Strategy Based on an Immunization Algorithm for Network Traffic

  • Zhao, Dongyan;Long, Keping;Wang, Dongxue;Zheng, Yichuan;Tu, Jiajing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1392-1403
    • /
    • 2015
  • The rapid development of both communication traffic and increasing optical network sizes has increased energy consumption. Traditional algorithms and strategies don't apply to controlling the expanded network. Immunization algorithms originated from the complex system theory are feasible for large-scale systems based on a scale-free network model. This paper proposes the immunization strategy for complex systems which includes random and targeted immunizations to solve energy consumption issues and uses traffic to judge the energy savings from the node immunization. The simulation results verify the effectiveness of the proposed strategy. Furthermore, this paper provides a possibility for saving energy with optical transmission networks.

A survey on cooperative fault-tolerant control for multiagent systems

  • Pu Zhang;Di Zhao;Xiangjie Kong;Jialong, Zhang;Lei Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1431-1448
    • /
    • 2024
  • Complexity science is a new stage in the development of systems science that is the frontier areas of contemporary scientific development. Complexity science takes complex systems as the research object, which has attracted widespread attention from researchers in the fields of economy, control, management, and society. In recent years, with the rapid development of science and technology and people's deepening understanding for the theory of complex systems, the systems are no longer an object with a single function, but the systems are composed of multiple individuals with autonomous capabilities through cooperative and cooperation, namely multi-agent system (MAS). Currently, MAS is one of the main models for studying such complex systems. The intelligent control is to break the traditional multi-agent fault-tolerant control (FTC) concept and produce a new type of compensation mechanism. In this paper, the applications of fault-tolerant control methods for MASs are presented, and a discussion is given about development and challenges in this field.

A Complex Bandpass Sampling Method for Downconversion of Multiple Bandpass Signals (다중 대역통과 신호의 하향변환을 위한 Complex Bandpass Sampling 기법)

  • Bae, Jung-Hwa;Ha, Won;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.913-921
    • /
    • 2005
  • A complex bandpass sampling technique can provide a more flexible architecture for designing a software- defined radio(SDR) system, because it has several advantageous features of larger sampling range and lower minimum sampling frequency than a real bandpass sampling method. In spite of the potential advantages of the complex bandpass sampling, solid investigation for the direct downconversion of multiple signals by the complex sampling theory has not been reported yet. Thus, we propose in this paper a novel scheme for the downconversion of multiple signals using the complex bandpass sampling, and develop the formulae related to the complex bandpass sampling for practical usage, such as the valid sampling range, the intermediate frequency (If), and the minimum sampling frequency of the downconversion of multiple RE signals. Such derived formulae are verified from simulations.

The development and operation characteristics analysis of PCS applied PV Output Senseless (POS) MPPT (PV Output Senseless (POS) MPPT 제어법이 적용된 단상 PCS 개발 및 운전특성 분석)

  • Lee, Seok-Ju;Park, Hae-Yong;Kim, Gyeong-Hun;Seo, Hyo-Ryong;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.226-227
    • /
    • 2007
  • The purpose of this study for photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional MPPT (Maximum Power Point Tracking) control method, both voltage and current coming out from PV array have to be fedback. Thus, the system has a complex structure, and may fail to track MPP of PV array when unexpected weather conditions happen. This paper proposes a novel PV Output Senseless (POS) control method to solve the mentioned problem. The main advantage of this method is that the current flowing into load is the only one considerable factor. In case of a huge PV generation system, it can be operated much more safely than the conventional system. To verify this theory, results that compare and analyze the simulated data with experimental data under real weather condition of the manufactured PV generation system are shown in this paper. Authors vividly states that this theory uses constant resistors and variable resistors of DC-DC converter in PV system. Authors emphasize that it is a very useful method to maximize power from PV cells to load with only the feedback of load current. Authors also emphasize that this theory is applicable in case of the PCS in PV power generation system.

  • PDF

The Institutional Elements and Institutional Congruence of National and Local Accounting System (국가회계와 지방회계의 구성요소와 제도적 정합성)

  • Lim, Dongwan
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.10
    • /
    • pp.343-359
    • /
    • 2017
  • This study aims to analyze the government accounting system of South Korea on the institutional complex and institutional congruence of new institutional theory and suggests policy reform for the system. I researched the literatures on the national and local accounting system and compiled research materials from the Ministry of Strategy and Finance, the Ministry of Interior and Safety, the Board of Audit and Inspection, and Government Accounting and Finance Statistics Center websites. Analysis showed that the government accounting system consists of various elements in institutional complex and the congruence level of national and local accounting system of South Korea is low in production, disclosure, and application of information. The suggestions of this study include: introducing accounting position recruitment, adopting government audit system, and improving cooperation between national accounting organizations and local accounting organizations for reliable information production; disclosing real time information and revealing information linking national and local accounting for transparent information disclosure; educating information user, providing accurate cost and available financial analysis indicators, introducing chief financial officer, and expanding range of consolidated national financial statements for information application.

System Theoretic Representation of UI System and DEVS Modeling (시스템 형식론에 의한 사용자 인터페이스 시스템 표현과 DEVS 모델링)

  • 김은하;조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.137-154
    • /
    • 1999
  • In this paper, we propose a software design method that will track the effects of modifications in a component to the rest of the components in the design phase. The prediction of the effects due to the design modifications before coding can be a valuable aid for the complex and large software development. Within the method, the target system is represented by the structured I/O system level specification which is one of the system representation level defined by the system theory. Then it is abstracted to the I/O system level. The DEVS (Discrete Event System Specification) model is constructed based on tile I/O system level specification. Finally, the DEVS model is simulated to generate the behavior of the software by the abstract simulator in DEVS simulation environment. As an application, the graphic user interface system of a metal grating production scheduling system is presented.

  • PDF

Development of the Model Using Queueing Theory for Lifting Planning in Tall Buildings (큐잉이론을 이용한 고층건물 가설리프트 계획모델 구축에 관한 연구)

  • Lee, Hak-Ju;Kim, Dae-Won;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.628-633
    • /
    • 2008
  • Tall building construction has been increasing due to the need to maximize land usage. It causes the increase of vertical transportation for workers and materials, which significantly affects the productivity and lifting planning, therefore, has to be made carefully based on the characteristics of the field. However, the existing method to calculate the number of lift is too simple to consider complex and various characteristics in tall building construction. Accordingly, we developed the model for selecting the best system of vertical transportation by using Queueing theory. To find out the situation of the queue of resources such as material and workers, a simulation program will be applied.

  • PDF