• Title/Summary/Keyword: Complex Stress Function

Search Result 143, Processing Time 0.029 seconds

Material Properties of Ni-P-B Electrodeposits for Steam Generator Tube Repair

  • Kim, Dong Jin;Seo, Moo Hong;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.112-117
    • /
    • 2004
  • This work investigated the material properties of Ni-P-B alloy electrodeposits obtained from a Ni sulfamate bath as a function of the contents of the P and B sources($H_3PO_3$ and dimethyl amine borane complex(DMAB), respectively) with/without additives. Chemical composition, residual stress, microstructure and micro hardness were investigated using ICP(inductively coupled plasma) mass spectrometer, flexible strip, XRD, TEM and micro Vickers hardness tester, respectively. From the results of the compositional analysis, it was observed that P and B are incorporated competitively during the electrodeposition and the sulfur from the additive is codeposited into the electrodeposit. The measured residual stress value increased in the order of Ni, Ni-P, Ni-B and Ni-P-B electrodeposits indicating that boron affects the residual tensile stress greater than phosphorus. As the contents of the alloying element sources of P and B increased, crystallinity and the grain size of the electrodeposit decreased. The effect of boron on crystallinity and grain size was also relatively larger than the phosphorus. It can be explained that the boron with a smaller atomic radius contributes to the increase of residual stress in the tensile direction and the larger restraining force against the grain growth more significantly than the phosphorus with a larger atomic radius. Introduction of an additive into the bath retarded crystallization and grain growth, which may be attributed to the change of the grain growth kinetics induced by the additive adsorbed on the substrate and electrodeposit surfaces during electrodeposition.

Biomechanical Effects of Facial Mask according to Direction of Forces on the Craniofacial Complex : A Finite Element Study (두개안면복합체에서 Face Mask의 견인방향에 따른 생역학적 연구 : 유한요소법 연구)

  • Hyun, Ha-Young;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.4
    • /
    • pp.359-371
    • /
    • 2007
  • Recently, many studies were reported accurate analysis of facemask effect due to the development of the personal computers and computer programs. The aim of this study is appropriate protraction direction of facemask using finite element study with computer aided design and computer aided measurement. The construction of the three dimensional FEM was based on the computer tomography(CT) scans of 13.5 year-old male subject. Protraction force of 500 mg was applied at 0, 30, 60 and 90 degrees downwards to the Frankfort horizontal plane, and maxillary displacement and stress distribution were measured. When 60 degree force was applied, it showed forward movement of premolar roots area and downward movement of anterior nasomaxillary area, and others showed clockwise rotation movement of the nasomaxillary complex. Finally, we can produce the protraction of maxillary bone without rotation of maxilla about 60 degrees.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구)

  • Yoon J.M.;Won J.H.;Kim J.S.;Choi J.H
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

Method using XFEM and SVR to predict the fatigue life of plate-like structures

  • Jiang, Zhansi;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.455-462
    • /
    • 2020
  • The hybrid method using the extended finite element method (XFEM) and the forward Euler approach is widely employed to predict the fatigue life of plate structures. Due to the accuracy of the forward Euler approach is determined by a small step size, the performance of fatigue life prediction of the hybrid method is not agreeable. Instead the forward Euler approach, a prediction method using midpoint method and support vector regression (SVR) is presented to evaluate the stress intensity factors (SIFs) and the fatigue life. Firstly, the XFEM is employed to calculate the SIFs with given crack sizes. Then use the history of SIFs as a function of either number of fatigue life cycles or crack sizes within the current cycle to build a prediction model. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Three numerical cases composed by a homogeneous plate with edge crack, a composite plate with edge crack and center crack are introduced to verify the performance of the proposed method. The results show that the proposed method enables large step sizes without sacrificing accuracy. The method is expected to predict the fatigue life of complex structures.

Microbiome of Halophytes: Diversity and Importance for Plant Health and Productivity

  • Mukhtar, Salma;Malik, Kauser Abdulla;Mehnaz, Samina
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Saline soils comprise more than half a billion hectares worldwide. Thus, they warrant attention for their efficient, economical, and environmentally acceptable management. Halophytes are being progressively utilized for human benefits. The halophyte microbiome contributes significantly to plant performance and can provide information regarding complex ecological processes involved in the osmoregulation of halophytes. Microbial communities associated with the rhizosphere, phyllosphere, and endosphere of halophytes play an important role in plant health and productivity. Members of the plant microbiome belonging to domains Archaea, Bacteria, and kingdom Fungi are involved in the osmoregulation of halophytes. Halophilic microorganisms principally use compatible solutes, such as glycine, betaine, proline, trehalose, ectoine, and glutamic acid, to survive under salinity stress conditions. Plant growth-promoting rhizobacteria (PGPR) enhance plant growth and help to elucidate tolerance to salinity. Detailed studies of the metabolic pathways of plants have shown that plant growth-promoting rhizobacteria contribute to plant tolerance by affecting the signaling network of plants. Phytohormones (indole-3-acetic acid and cytokinin), 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, exopolysaccharides, halocins, and volatile organic compounds function as signaling molecules for plants to elicit salinity stress. This review focuses on the functions of plant microbiome and on understanding how the microorganisms affect halophyte health and growth.

Effects of sleep deprivation on coronary heart disease

  • Wei, Ran;Duan, Xiaoye;Guo, Lixin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.297-305
    • /
    • 2022
  • The presence of artificial light enables humans to be active 24 h a day. Many people across the globe live in a social culture that encourages staying up late to meet the demands of various activities, such as work and school. Sleep deprivation (SD) is a severe health problem in modern society. Meanwhile, as with cardiometabolic disease, there was an obvious tendency that coronary heart disease (CHD) to become a global epidemic chronic disease. Specifically, SD can significantly increase the morbidity and mortality of CHD. However, the underlying mechanisms responsible for the effects of SD on CHD are multilayered and complex. Inflammatory response, lipid metabolism, oxidative stress, and endothelial function all contribute to cardiovascular lesions. In this review, the effects of SD on CHD development are summarized, and SD-related pathogenesis of coronary artery lesions is discussed. In general, early assessment of SD played a vital role in preventing the harmful consequences of CHD.

Development of a Stress ECG Analysis Algorithm Using Wavelet Transform (웨이브렛 변환을 이용한 스트레스 심전도 분석 알고리즘의 개발)

  • 이경중;박광리
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.269-278
    • /
    • 1998
  • This paper describes a development of efficient stress ECG signal analysis algorithm. The algorithm consists of wavelet adaptive filter(WAF), QRS detector and ST segment detector. The WAF consists of a wavelet transform and an adaptive filter. The wavelet transform decomposed the ECG signal into seven levels using wavelet function for each high frequency bank and low frequency bank. The adaptive filter used the signal of the seventh lowest frequency band among the wavelet transformed signals as primary input. For detection of QRS complex, we made summed signals that are composed of high frequency bands including frequency component of QRS complex and applied the adaptive threshold method changing the amplitude of threshold according to RR interval. For evaluation of the performance of the WAF, we used two baseline wandering elimination filters including a standard filter and a general adaptive filter. WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of results of QRS complex detection, we compared our algorithm with existing algorithms using MIT/BIH database. Our algorithm using summed signals showed the accuracy of 99.67% and the higher performance of QRS detection than existing algorithms. Also, we used European ST-T database and patient data to evaluate measurement of the ST segment and could measure the ST segment adaptively according to change of heart rate.

  • PDF

Finite Element Analysis of Stress Distribution in using Face Mask according to Traction Point (훼이스 마스크의 견인위치에 따른 응력분포에 관한 유한요소법적 연구)

  • Oh, Kyo-chang;Cha, Kyung-Suk;Chung, Dong-hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.171-181
    • /
    • 2009
  • The objective of this study was to analyse stress distribution of maxillary complex by use of face mask. The construction of the three-dimensional FEM model was based on the computed tomography(CT) scans of 13.5 years-old male subject. The CT image were digitized and converted to the finite element model by using the mimics program, with PATRAN. An anteriorly directed force of 500g was applied at the first premolar 45 degrees downwards to the FH plane and at the first molar 20 degrees downwards to the FH plane. When 45 degrees force was applied at maxillary first premolar, there were observed expansion at molar part and constriction at premolar part. The largest displacement was 0.00011mm in the x-axis. In the y-axis, anterior displacement observed generally 0.00030mm at maximum. In the z-axis, maxillary complex was displaced 0.00036 mm forward and downward. When 20 degrees force was applied at maxilla first molar, there were observed expansion at lateral nasal wall and constriction at molar part. The largest displacement was 0.001mm in the X-axis. In the Y-axis, anterior displacement observed generally 0.004mm at maximum. In the Z-axis, ANS was displaced upward and pterygoid complex was displaced downward. The largest displacement was 0.002mm.

Immobilization stress increased cytochrome P450 1A2 (CYP1A2) expression in the ovary of rat

  • Hwang, Jong-Chan;Kim, Hwan-Deuk;Park, Byung-Joon;Jeon, Ryoung-Hoon;Baek, Su-Min;Lee, Seoung-Woo;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Park, Jin-Kyu;Kwon, Young-Sam;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Under the stressed condition, a complex feedback mechanism for stress is activated to maintain homeostasis of the body and secretes several stress hormones. But these stress hormones impair synthesis and secretion of the reproductive hormones, followed by suppression of ovarian function. Cytochrome P450 1A2 (CYP1A2) plays a major role in metabolizing exogenous substances and endogenous hormones, and its expression is recently identified at not only the liver but also several organs with respect to the pancreas, lung and ovary. Although the expression of CYP1A2 can be also affected by several factors, understanding for the changed pattern of the ovarian CYP1A2 expression upon stress induction is still limited. Therefore, CYP1A2 expression in the ovaries from immobilization stress-induced rats were assessed in the present study. The stress-induced rats in the present study exhibited the physiological changes in terms of increased stress hormone level and decreased body weight gains. Under immunohistological observation, the ovarian CYP1A2 expression in both control and the stressed ovary was localized in the antral to pre-ovulatory follicles. However, its expression level was significantly (p < 0.01) higher in the stress-induced group than control group. In addition, stress-induced group presented more abundant CYP1A2-positive follicles (%) than control group. Since expression of the ovarian CYP1A2 was highly related with follicle atresia, increased expression of CYP1A2 in the stressed ovary might be associated with changes of the ovarian follicular dynamics due to stress induction. We hope that these findings have important implications in the fields of the reproductive biology.

Vibration Analysis of Cracked Rotor (균열 회전체의 진동해석)

  • Jun, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.925-934
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterative method. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

  • PDF