• 제목/요약/키워드: Complex Stiffness

검색결과 379건 처리시간 0.026초

진동파워를 이용한 다차원 진동절연계 해석시 절연요소의 파동효과를 고려한 등가강성화 (Equivalent Stiffness Modeling of Isolators to Consider Wave Effects in Multi-dimensional Vibration Isolation Analysis, via Vibrational Power)

  • 최규상;이호정;김광준
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.517-524
    • /
    • 1999
  • Mathematical formulas for multi-dimensional isolation analysis via vibrational power transmission can be derived in a rather simple form when the wave effects of the isolators are completely neglected. With increase of frequency range of interest, however, the wave effects play a very important role and hence cannot be neglected. The formulas get involved accordingly. In this study, a method of equivalent stiffness modeling of the isolators to include the wave effects is proposed in such a way that not only the complexity of the mathematical expressions but also that of experiments of necessity can be reduced. This method is illustratively applied to a two-dimensional vibration isolation system with nonrigid source and base structures.

  • PDF

강성계수의 전달을 이용한 골조구조물의 정적해석 (Static Analysis of Frame Structures Using Transfer of Stiffness Coefficient)

  • 문덕홍;최명수;정하용
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.287-294
    • /
    • 2001
  • In static analysis of a variety of structures, the matrix method of structural analysis is the most widely used and powerful analysis method. However, this method has drawback requiring high-performance computers with many memory units and fast processing units in the case of analyzing complex and large structures accurately. Therefore, it's very difficult to analyze these structures accurately in personal computers. For overcoming the drawback of the matrix method of structural analysis, authors suggest transfer stiffness coefficient method(TSCM). The TSCM is very suitable to a personal computer because the concept of the TSCM is based on the transfer of the stiffness coefficient for an analytical structure. In this paper, the static analysis algorithm for frame structures is formulated by the TSCM. We confirm the validity of the proposed method through the compare of computation results by the TSCM and the NASTRAN.

  • PDF

회전축요소의 전달행렬의 이용과 진동해석 (Using of Transfer Matrix for Shaft Element and Vibration Analysis)

  • 전오성
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.161-169
    • /
    • 2002
  • Based on the analytic expression for the elasto-dynamic behavior of rotating shaft, the transfer matrix is formulated for the shaft element with uniform cross-section. Timoshenko beam theory is Introduced for modeling the behavior of shaft. Complex variables representing the displacement, slope, moment and shear force are used for deriving the transfer matrix between both ends of the shaft element. Simulation result obtained by applying the transfer matrix to a general rotor model is compared with the reference result and proved to be exact. Natural frequencies and the corresponding modes are analyzed with varying the bearing: stiffness. The generally used bearings are considered for discussions. and the bearing stiffness is shown to affect the vibration characteristics of rotor.

머시닝 센터의 정${\cdot}$동강성 평가에 관한 연구 (A study on the Evaluation for the Static and Dynamic stiffness of a Machining Center)

  • 이춘만;박동근;임상헌
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.294-299
    • /
    • 2005
  • A machining center is a complex dynamic system whose behavior influences the machining stability and machined surface quality. This paper focused on establishment of a measurement system and experimental study on static, dynamic, and modal analysis of a machining center. The dynamic stiffness result by the analysis showed the weak part of the machining center. The results provided structure modification data for getting better dynamic behaviors.

  • PDF

박용엔진 축계 비틀림/종 연성진동 해석을 위한 크랭크 축 강성행렬 구축 (Crankshaft Stiffness Matrix Construction for the Vibration Analysis Coupled with Torsional and Axial Directions of a Marine Engine Shaft System)

  • 김원진;전민규;정동관
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.55-61
    • /
    • 1999
  • The torsional and axial vibrations of shaft system have been calculated independently because of both the limitation of computing time and the complexity of crankshaft model. In actual system, however, the torsional and axial vibrations are coupled. Therefore, in recent, many works in the coupled vibration analysis have been done to find out the more exact dynamic behavior of shaft system. The crankshaft model is very important in the vibration analysis of shaft system because most of excitation forces act on the crankshaft. It is, however, difficult to establish an exact model of crankshaft since its shape is very complex. In this work, an efficient method is proposed to construct the stiffness matrix of crankshaft using a finite element model of half crankthrow. The proposed and existing methods are compared by applying to both a simple thick beam with circular cross section and an actual crankshaft.

  • PDF

균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도 (Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation)

  • 김문영;윤희택;곽태영
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.463-469
    • /
    • 2002
  • 탄성지반 위에 놓인 보-기둥 요소의 총포텐셜 에너지로부터 변분원리를 적용하여 지배방정식과 힘-변위 관계식을 유도하였다. 4계 상미분방정식 형태의 지배방정식을 4개의 변위 파라메타를 도입하여 1계 연립미분방정식 형태의 선형 고유치 문제로 전환하고, 힘-변위 관계식을 적용하여 엄밀한 정적, 동적 요소강성행렬을 유도하였다. 직접강성법을 이용하여 구조물 강성행렬을 구하고, 2차원 보-기둥구조의 엄밀한 좌굴하중과 고유진동수를 구하고, 결과를 유한요소해와 비교함으로써 본 연구의 타당성을 검증하였다. 이러한 엄밀한 해석방법은 Hermitian 다항식을 형상함수로 도입하여 요소의 강성행렬을 산정하는 유한요소법과 비교할 때, 요소의 수를 대폭 줄일 수 있는 장점이 있다.

A numerical solution for a finite internally cracked plate using hybrid crack element method

  • Chen, Y.Z.
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.813-827
    • /
    • 2011
  • This paper provides a numerical solution for a finite internally cracked plate using hybrid crack element method (HCE). In the formulation, an inclined crack is placed in any place of a rectangular element and the complex variable method is used. The complex potentials are expressed in a series form, and several undetermined coefficients are involved. The complex potentials for the cracked rectangle are first suggested in this paper. Based on a variational principle, the element stiffness matrix can be evaluated. The next steps are same as in the usual finite element method. Several numerical examples with computed stress intensity factor and T-stress are presented.

압축된 방진고무의 강성 해석 (Stiffness Analysis of Compressed Rubber Components for Anti-Vibration)

  • 김국원;임종락;안태길
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.141-147
    • /
    • 1999
  • Optical disk technology with a laser beam for data recording and retrieval is one of the most promising route for high density information storage in multimedia era. As the storage density and data transfer rates are increased, mechanical issues, mainly noise and vibration, become critical. Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber components with complex shape and under pre-deformed state. In this paper, non-linear large deformations of a rubber mount for optical disk drive were investigated using the finite element method. A tension test of rubber material was performed, to calculate a strain energy function. According to the pre-deformed state, the variation of rubber mount stiffness were calculated and the reliability of numerical results were checked by compared with the measuring the deflection values. Also, the effects of the pre-deformed rubber mount on the system dynamic characteristics were investigated and the relation between the static stiffness variation of rubber mount and the natural frequence variation of system was discussed.

  • PDF

Effects of coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness on wind-excited tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.61-80
    • /
    • 2002
  • Wind tunnel aeroelastic model tests of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building were conducted using a three-degree-of-freedom base hinged aeroelastic(BHA) model. Experimental investigation into the effects of coupled translational-torsional motion, cross-wind/torsional frequency ratio and eccentricity between centre of mass and centre of stiffness on the wind-induced response characteristics and wind excitation mechanisms was carried out. The wind tunnel test results highlight the significant effects of coupled translational-torsional motion, and eccentricity between centre of mass and centre of stiffness, on both the normalised along-wind and cross-wind acceleration responses for reduced wind velocities ranging from 4 to 20. Coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness also have significant impacts on the amplitude-dependent effect caused by the vortex resonant process, and the transfer of vibrational energy between the along-wind and cross-wind directions. These resulted in either an increase or decrease of each response component, in particular at reduced wind velocities close to a critical value of 10. In addition, the contribution of vibrational energy from the torsional motion to the cross-wind response of the building model can be greatly amplified by the effect of resonance between the vortex shedding frequency and the torsional natural frequency of the building model.

Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.849-866
    • /
    • 2012
  • Single span historic bridges often contain non-prismatic members identified with a varying depth along their span lengths. Commonly, the symmetric parabolic height variations having the constant haunch length ratio of 0.5 have been selected to lower the stresses at the high bending moment points and to maintain the deflections within the acceptable limits. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces (FEFs) and fixed-end moments (FEMs) becomes a complex problem. Therefore, this study aimed to investigate the behavior of non-prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant haunch length ratio of 0.5 using finite element analyses (FEA). FEFs and FEMs due to vertical loadings as well as the stiffness coefficients and the carry-over factors were computed through a comprehensive parametric study using FEA. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. Despite the robustness of FEA, the generation of FEFs and FEMs using the nodal outputs of the detailed finite element mesh still remains an intricate task. Therefore, this study advances to propose effective formulas and dimensionless estimation coefficients to predict the FEFs, FEMs, stiffness coefficients and carry-over factors with reasonable accuracy for the analysis and re-evaluation of the NBSPH. Using the proposed approach, the fixed-end reactions due to vertical loads, and also the stiffness coefficients and the carry-over factors of the NBSPH can be determined without necessitating the detailed FEA.