• Title/Summary/Keyword: Complex Sensor

Search Result 620, Processing Time 0.024 seconds

Developing Artificial Neurons Using Carbon Nanotubes Smart Composites (탄소나노튜브 스마트 복합소재를 이용한 인공뉴런 개발 연구)

  • Kang, In-Pil;Baek, Woon-Kyung;Choi, Gyeong-Rak;Jung, Joo-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.136-141
    • /
    • 2007
  • This paper introduces an artificial neuron which is a nano composite continuous sensor. The continuous nano sensor is fabricated as a thin and narrow polymer film sensor that is made of carbon nanotubes composites with a PMMA or a silicone matrix. The sensor can be embedded onto a structure like a neuron in a human body and it can detect deteriorations of the structure. The electrochemical impedance and dynamic strain response of the neuron change due to deterioration of the structure where the sensor is located. A network of the long nano sensor can form a structural neural system to provide large area coverage and an assurance of the operational health of a structure without the need for actuators and complex wave propagation analyses that are used with other methods. The artificial neuron is expected to effectively detect damage in large complex structures including composite helicopter blades and composite aircraft and vehicles.

  • PDF

A Study on the Step-Up Converter with the New Topology Method (내구성이 개선된 발전용 가스터빈 온도센서 개발에 관한 연구)

  • Lee, Young-Jun;Jung, Hai-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1175-1186
    • /
    • 2020
  • In this study, the problem is analyzed, and methods of improvement are presented. For evaluating the performance of the proposed EGT sensor, a complex environment test equipment has been developed to test both high temperature and vibration conditions at the same time. This equipment evaluates the accuracy and response time of the EGT sensor. In the results of the comparison test of the complex environment test equipment of heat and vibration, the existing sensor showed a carbonization problem, and the proposed sensor showed no problem. Therefore, it is expected that the improved EGT sensor will be able to be applied to various industrial fields, including gas turbines for power generation.

RSNT-cFastICA for Complex-Valued Noncircular Signals in Wireless Sensor Networks

  • Deng, Changliang;Wei, Yimin;Shen, Yuehong;Zhao, Wei;Li, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4814-4834
    • /
    • 2018
  • This paper presents an architecture for wireless sensor networks (WSNs) with blind source separation (BSS) applied to retrieve the received mixing signals of the sink nodes first. The little-to-no need of prior knowledge about the source signals of the sink nodes in the BSS method is obviously advantageous for WSNs. The optimization problem of the BSS of multiple independent source signals with complex and noncircular distributions from observed sensor nodes is considered and addressed. This paper applies Castella's reference-based scheme to Novey's negentropy-based algorithms, and then proposes a novel fast fixed-point (FastICA) algorithm, defined as the reference-signal negentropy complex FastICA (RSNT-cFastICA) for complex-valued noncircular-distribution source signals. The proposed method for the sink nodes is substantially more efficient than Novey's quasi-Newton algorithm in terms of computational speed under large numbers of samples, can effectively improve the power consumption effeciency of the sink nodes, and is significantly beneficial for WSNs and wireless communication networks (WCNs). The effectiveness and performance of the proposed method are validated and compared with three related BSS algorithms through theoretical analysis and simulations.

A Study of Non-Intrusive Appliance Load Identification Algorithm using Complex Sensor Data Processing Algorithm (복합 센서 데이터 처리 알고리즘을 이용한 비접촉 가전 기기 식별 알고리즘 연구)

  • Chae, Sung-Yoon;Park, Jinhee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.199-204
    • /
    • 2017
  • In this study, we present a home appliance load identification algorithm. The algorithm utilizes complex sensory data in order to improve the existing NIALM using total power usage information. We define the influence graph between the appliance status and the measured sensor data. The device identification prediction result is calculated as the weighted sum of the predicted value of the sensor data processing algorithm and the predicted value based on the total power usage. We evaluate proposed algorithm to compare appliance identification accuracy with the existing NIALM algorithm.

Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks

  • Cai, Xingjuan;Sun, Youqiang;Cui, Zhihua;Zhang, Wensheng;Chen, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2469-2490
    • /
    • 2019
  • A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT's Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs).

Distributed Prevention Mechanism for Network Partitioning in Wireless Sensor Networks

  • Wang, Lili;Wu, Xiaobei
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.667-676
    • /
    • 2014
  • Connectivity is a crucial quality of service measure in wireless sensor networks. However, the network is always at risk of being split into several disconnected components owing to the sensor failures caused by various factors. To handle the connectivity problem, this paper introduces an in-advance mechanism to prevent network partitioning in the initial deployment phase. The approach is implemented in a distributed manner, and every node only needs to know local information of its 1-hop neighbors, which makes the approach scalable to large networks. The goal of the proposed mechanism is twofold. First, critical nodes are locally detected by the critical node detection (CND) algorithm based on the concept of maximal simplicial complex, and backups are arranged to tolerate their failures. Second, under a greedy rule, topological holes within the maximal simplicial complex as another potential risk to the network connectivity are patched step by step. Finally, we demonstrate the effectiveness of the proposed algorithm through simulation experiments.

Performance Evaluation, Optimal Design and Complex Obstacle Detection of an Overlapped Ultrasonic Sensor Ring (중첩 초음파 센서 링의 성능 평가, 최적 설계 및 복합 장애물 탐지)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.341-347
    • /
    • 2011
  • This paper presents the performance evaluation. optimal design. and complex obstacle detection of an overlapped ultrasonic sensor ring by introducing a new concept of effective beam width. It is assumed that a set of ultrasonic sensors of the same type are arranged along a circle of nonzero radius at regular spacings with their beams overlapped. First, the global positional uncertainty of an overlapped ultrasonic sensor ring is expressed by the average value of local positional uncertainty over the entire obstacle detection range. The effective beam width of an overlapped ultrasonic sensor ring is assessed as the beam width of a single ultrasonic sensor having the same amount of global positional uncertainty, from which a normalized obstacle detection performance index is defined. Second. using the defined index, the design parameters of an overlapped ultrasonic sensor ring are optimized for minimal positional uncertainty in obstacle detection. For a given number of ultrasonic sensors, the optimal radius of an overlapped ultrasonic sensor ring is determined, and for a given radius of an overlapped ultrasonic sensor ring, the optimal number of ultrasonic sensors is determined. Third, the decision rules of positional uncertainty zone for multiple obstacle detection are provided based on the inequality relationships among obstacle distances by three adjacent ultrasonic sensors. Using the provided rules, the obstacle outline detection is performed in a rather complex environment consisting of several obstacles of different shapes.

Complex Modal Testing of Asymmetric Rotors Using Magnetic Exciter Equipped with Hall Sensors

  • Lee, Chong-Won;Kim, Si-Kyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.866-875
    • /
    • 2001
  • The complex modal testing methods developed for asymmetric rotors are briefly discussed and their performances are experimentally evaluated. For the experiments, a laboratory test rotor is excited by using a newly developed, cost effective magnetic exciter equipped with Hall sensors, which measure the excitation forces. It is concluded that the exciter system is characterized by a wide bandwidth and a high resolution for both the excitation and force measurement, and that the one-exciter/two-sensor technique for complex modal testing of asymmetric rotors is superior to the standard two-exciter/two-sensor technique in terms of practicality and realization.

  • PDF