• 제목/요약/키워드: Complex Phenomena

검색결과 599건 처리시간 0.028초

Applied element method simulation of experimental failure modes in RC shear walls

  • Cismasiu, Corneliu;Ramos, Antonio Pinho;Moldovan, Ionut D.;Ferreira, Diogo F.;Filho, Jorge B.
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.365-374
    • /
    • 2017
  • With the continuous evolution of the numerical methods and the availability of advanced constitutive models, it became a common practice to use complex physical and geometrical nonlinear numerical analyses to estimate the structural behavior of reinforced concrete elements. Such simulations may yield the complete time history of the structural behavior, from the first moment the load is applied until the total collapse of the structure. However, the evolution of the cracking pattern in geometrical discontinuous zones of reinforced concrete elements and the associated failure modes are relatively complex phenomena and their numerical simulation is considerably challenging. The objective of the present paper is to assess the applicability of the Applied Element Method in simulating the development of distinct failure modes in reinforced concrete walls subjected to monotonic loading obtained in experimental tests. A pushover test was simulated numerically on three distinct RC shear walls, all presenting an opening that guarantee a geometrical discontinuity zone and, consequently, a relatively complex cracking pattern. The presence of different reinforcement solutions in each wall enables the assessment of the reliability of the computational model for distinct failure modes. Comparison with available experimental tests allows concluding on the advantages and the limitations of the Applied Element Method when used to estimate the behavior of reinforced concrete elements subjected to monotonic loading.

하천의 만곡류에 관한 이론적 고찰 (Fundamental Theory of flow of water in bends of open channel)

  • 선우중호;윤영남
    • 물과 미래
    • /
    • 제10권1호
    • /
    • pp.53-70
    • /
    • 1977
  • The analysis performed here is aimed to increase the familiarity of hydrologic process especially for the small basins which are densely gaged. Kyung An and Mu Shim river basins are selected as a representative basin according to the criteria which UNESCO has established back in 1964 and being operated under the auspice of Ministry of Construction. The data exerted from these basins is utilized for the determination of characteristics of procipitation and runoff phenomena for the small basin, which is considered as a typical Korean samall watershed. The study found that the areal distribution of preciptation did not show any significant deviation from the point rainfall. Since the area studied is less than 20 km#, the pointrainfall may be safely utilized as a representative value for the area. Also the effect of elevation on the precipitation has a minor significance in the small area where the elevation difference is less than 200m. The methodology developed by Soil Conservation Service for determination of runoff value from precipitation is applied to find the suitability of the method to Korean river basin. The soil cover complex number or runoff curve number was determined by comsidering the type of soil, soil cover, land use and other factors such as antecedent moisture content. The average values of CN for Kyung An and Mushim river basins were found to be 63.9 and 63.1 respectively under AMC II, however, values obtained from soil cover complex were less than those from total precipitation and effective precipitation about 10-30%. It may be worth to note that an attention has to be paid in application of SCS method to Korean river basin by adjusting 10-30% increase to the value obtained from soil cover complex. Finally, the design flood hydrograph was consturcted by employing unit hydrograph technique to the dimensionless mass curve. Also a stepwise multiple regression was performed to find the relationship between runoff and API, evapotranspiration rate, 5 days antecedentprecipitation and daily temperature.

  • PDF

Needham's grand question: its accurate answer and the mathematical principles of Chinese natural philosophy and medicine

  • Chang, Shyang
    • 셀메드
    • /
    • 제5권2호
    • /
    • pp.9.1-9.14
    • /
    • 2015
  • The so-called "Needham's Grand Question" (NGQ) can be formulated as why modern science was developed in Europe despite the earlier successes of science and technology in ancient China. Numerous answers have been proposed. In this review, it will be pointed out that traditional Chinese natural philosophy (TCNP) and traditional Chinese medicine (TCM) are in fact dealing with problems of highly complex dynamical systems of Nature and human beings. Due to the lack of mathematical machinery in dealing with such complex phenomena, a holistic approach was taken by ancient Chinese instead. It was very successful for the first eighteen centuries. In the recent three centuries, however, the reductionist and mechanistic viewpoints of Western natural philosophy, sciences, and medicine have been prevalent all over the world up to now. The main obstacle in preventing the advancement of TCM, TCNP and its sciences is actually the lacking of proper mathematical tools in dealing with complex dynamical systems. Fortunately, the tools are now available and a "chaotic wave theory of fractal continuum" has been proposed recently. To give the theory an operational meaning, three basic laws of TCNP are outlined. These three laws of wave/field interactions contrast readily with those of Newton's particle collisions. Via the proposed three laws, TCM, TCNP and its sciences can be unified under the same principles. Finally, an answer to NGQ can be accurately given. It is hoped that this review will help promoting a genuine understanding of natural philosophy, sciences, and medicine in an ecumenical way.

혼돈이론을 응용한 예망어구에 대한 어류반응 행동모델의 수중현상 시각화 (Underwater Visualization for Fish Behaviour Model in the Towed Fisheries using Chaos Theory)

  • 박명철;김용해;하석운
    • 한국정보통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.645-653
    • /
    • 2004
  • 수중 어류의 행동이나 현상을 예측하여 시각화하기 위해서는 어류의 탐지와 어류반응행동의 파악이 우선 이루어져야 한다. 수중이라는 다변적인 환경요인이 현장 계측을 매우 어렵게 하거나 어류의 행동이 비선형적으로 복잡하고 혼돈스러우므로 기존의 단순한 그래픽처리는 실제 수중현상간의 차이를 극복하지 못해왔던 실정이다. 이에 본 논문에서는 매우 복잡 다양한 어류행동반응의 패턴에 대하여 기존의 연구에서 제안된 혼돈이론을 응용한 어류반응행동 모델을 이용하여 시각화 도구를 제안함으로써 수중의 어류이동현상을 예측하거나 평가, 또는 보다 더 정확히 분석하는 자료를 얻을 수 있게 구현하였다. 아울러, 어탐 디스플레이를 동시에 적용하여 사용자에게 반응에 따르는 어류의 탐지상황도 제공하였다. 제안된 시각화 도구를 평가하기 위하여 현장 계측된 어류의 이동 정보와 비교한 결과, 제안된 시각화 도구는 사실성 높은 어류 행동과 시각적인 이해도를 높일 수 있음을 확인 할 수 있었다.

Nonequilibrium Domain Configurations Undergoing Large Angle Rotations in Mesoscopic Magnetic Thin Film Elements (retracted)

  • Choi, B.C.;Hong, Y.K.;Rudge J.;Donohoe G.;Xiao Q.F.
    • Journal of Magnetics
    • /
    • 제11권2호
    • /
    • pp.61-65
    • /
    • 2006
  • The physical origin of complex dynamic domain configuration in nonequilibrium magnetic systems with mesoscopic length scales has been studied. An increasing complexity in the spatial feature of the evolution is found to accompany the increasing reversal speed, when a ferromagnetic element is driven by progressively faster switching fields applied antiparallel to the initial magnetization direction. As reversal rates approach the characteristic precession frequencies of spin fluctuations, the thermal energy can boost the magnetization into local configurations which are completely different from those experienced during quasistatic reversal. The sensitive dependence of the spatial pattern on switching speed can be understood in terms of a dynamic exchange interaction of thermally excited spins; the coherent modulation of the spins is strongly dependent on the rise time of switching pulses.

나선 스파이크 전기집진기 내 유동 및 집진 현상에 대한 전기수력학 수치해석 연구 (A NUMERICAL ANALYSIS ON ELECTROHYDRODYNAMICS (EHD) OF THE FLOW AND THE COLLECTION MECHANISMS INSIDE AN ELECTROSTATIC PRECIPITATOR WITH A SPIRAL SPIKE ELECTRODE)

  • 이상혁;허남건
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.58-65
    • /
    • 2008
  • In the present study, a numerical analysis on electrohydrodynamics (EHD) of the flow and the collection mechanisms inside a electrostatic precipitator with a spiral spike electrode were investigated. The phenomena of the electrostatic precipitator include complex interactions between the electric field, the fluid flow and the particle motion. To validate the numerical method, the numerical computation for the electric field of a simple wire-pipe type electrostatic system having an analytic solution were performed. Using this numerical method, the electric field of the spiked electrostatic precipitator was simulated. And the fluid flow and the particle motion inside the spiked electrostatic precipitator were numerically analyzed.

증기폭발 적용 축방향 토모그라피 기술 개발 (Development of axial tomography technique for the study of steam explosion)

  • 서시원;하광순;홍성완;송진호;이재영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3027-3032
    • /
    • 2007
  • To understand the complex phenomena performed in steam explosion, the fast and global measurement of the steam distribution is imperative for this extremely rapid transient stimulation of the bubble breakup and coalescence due to turbulent eddies and shock waves. TROI, the experimental facility requests more robust sensor system to meet this requirement. In Europe, researchers are prefer a X-ray method but this method is very expensive and has limited measurement range. There is an alternative technology such as ECT. Because of TROI's geometry, however, we need axial tomography method. This paper reviews image reconstruction algorethms for axial tomography, including Tikhonov regularization and iterative Tikhonov regularization. Axial tomography method is examined by simulation and experiment for typical permittivity distributions. Future works in axial tomography technology is discussed.

  • PDF

HIGH BURNUP CHANGES IN UO2 FUELS IRRADIATED UP TO 83 GWD/T IN M5(R) CLADDINGS

  • Noirot, J.;Aubrun, I.;Desgranges, L.;Hanifi, K.;Lamontagne, J.;Pasquet, B.;Valot, C.;Blanpain, P.;Cognon, H.
    • Nuclear Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.155-162
    • /
    • 2009
  • Since the 90's, EDF and AREVA-NP have irradiated, up to very high burnups, lead assemblies housing $M5^{(R)}$ cladded fuels. Post-irradiation examination of high burnup $UO_2$ pellets show an increase in the fission-gas release rate, an increase in fuel swelling, and formation of fission-gas bubbles throughout the pellets. Xenon abundances were quantified, and phenomena leading to this bubble formation were identified. All examinations provided valuable data on the complex state of the fuel during irradiation. They show the good behavior of these fuels, exhibiting various microstructures at very high burnups, none of which is likely to lead to problems during irradiation.

고분자 나노 소재의 응용 및 연구 현황 (Polymeric Nano-materials: Applications & Research Trends)

  • 박영준
    • 대한화장품학회지
    • /
    • 제28권2호
    • /
    • pp.55-57
    • /
    • 2002
  • The fabrication, characterization and manipulation of nanosystems brings together physics, chemistry, materials science and biology in an unprecedented way, Phenomena occurring in such systems are fundamental to the workings of electronic devices, but also to living organisms. The ability to fabricate nanostructures is essential in the further development of functional devices that incorporate nanoscale features. Even more essential is the ability to introduce a wide range of chemical and materials flexibility into these structures to build up more complex nanostructures that can ultimately rival biological nanosystems. In this respect, polymers are potentially ideal nanoscale building blocks because of their length scale, well-defined architecture, controlled synthesis, ease of processing and wide range of chemical functionality that can be incorporated. In this presentation, we will look at a number of promising polymer-based nanofabrication strategies that have been developed recently, with an emphasis on those techniques that incorporate nanostructured polymers into devices and that exploit intrinsic polymer properties.

Heat resistance of carbon nanoonions by molecular dynamics simulation

  • Wang, Xianqiao;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • 제4권4호
    • /
    • pp.247-255
    • /
    • 2011
  • Understanding the structural stability of carbon nanostructure under heat treatment is critical for tailoring the thermal properties of carbon-based material at small length scales. We investigate the heat resistance of the single carbon nanoball ($C_{60}$) and carbon nanoonions ($C_{20}@C_{80}$, $C_{20}@C_{80}@C_{180}$, $C_{20}@C_{80}@C_{180}C_{320}$) by performing molecular dynamics simulations. An empirical many-body potential function, Tersoff potential, for carbon is employed to calculate the interaction force among carbon atoms. Simulation results shows that carbon nanoonions are less resistive against heat treatment than single carbon nanoballs. Single carbon nanoballs such $C_{60}$ can resist heat treatment up to 5600 K, however, carbon nanoonions break down after 5100 K. This intriguing result offers insights into understanding the thermal-mechanical coupling phenomena of nanodevices and the complex process of fullerenes' formation.