• Title/Summary/Keyword: Complex Normal Modes

Search Result 27, Processing Time 0.02 seconds

Analysis of Diagnosis and Failsafe Algorithm Using Transmission Simulator (변속기 시뮬레이터를 이용한 진단 및 안전작동 알고리즘 분석)

  • Jung, Gyuhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.89-97
    • /
    • 2014
  • As the digital control technologies in automotive industry have advanced, electronic control units(ECUs) play a key-role to improve system performance. Transmission control unit(TCU) is a shifting controller for automatic transmission of which major functions are to determine the shift and manage the shifting process considering the various sensor signal on transmission and driver's commands. As with any ECU in vehicle, TCU performs complex algorithms such as shift control, diagnostic and failsafe functions. However, firmware design analysis is hardly possible by the reverse engineering due to code protection. Transmission simulator is a hardware-in-the-loop simulator which enables TCU to work in normal mode by simulating the electrical signal of TCU interface. In this research, diagnosis and failsafe algorithm implemented on commercialized TCU is analyzed by using the transmission simulator that is developed for wheel loader construction vehicle. This paper gives various experimental results on the proportional solenoid current trajectories for different operating modes, error detection criterion and limphome mode gears for all the possible cases of clutch malfunction. The derived results for conventional TCU can be applied to the development of inherent TCU algorithms and the transmission simulator can also be utilized for the test of TCU to be developed.

Development of a Fault Detection and Diagnosis Algorithm Using Fault Mode Simulation for a Centrifugal Chiller (고장모사 시뮬레이션을 이용한 터보냉동기의 고장검출 및 진단 알고리즘 개발)

  • Han, Dong-Won;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.669-678
    • /
    • 2008
  • When operating a complex facility, Fault Detection and Diagnosis (FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. In this research, FDD algorithm was developed using the general pattern classifier method that can be applied to centrifugal chiller system. The simulation model for a centrifugal chiller system was developed in order to obtain characteristic data of turbo chiller system under normal and faulty operation. We tested FDD algorithm of a centrifugal chiller using data from simulation model at full load performance and 60% part load performance. In this research, we presented fault detection method using a normalized distance. Sensitivity analysis of fault detection was carried out with respect to fault progress. FDD algorithm developed in this study was found to indicate each failure modes accurately.

Program Development on the Thermofluidodynamic Analysis of LNG Storage Tanks (LNG 저장탱크의 종합 열유동 해석프로그램 개발)

  • Kim Hoyeon;Choi Sunghee;Bak Young;Lee Junghwan;Yoon Ikkeun;Kim Donghyuk;Ha Jongmann;Joo Sangwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.52-61
    • /
    • 2001
  • Cryogenic LNG(Liquefied Natural Gas) which is stored in the cylindrical storage tanks of $100,000m^3$ has very complex flow phenomena and the changes of thermal properties with exterior conditions and operation modes. These complex thermofluid behaviors are affected by the storage, exterior conditions of LNG, design specifications and heat transfer characteristics of tanks. Also, those have influence on the stable storage and supply of LNG in the storage tanks. Thus this study peformed the analysis on the 2-D heat transfer of the tank with exterior conditions, on the Cool Down Process in order to cool down the LNG Storage Tank at the initial normal state, and on the Filling Process considered for incoming and rising of LNG. The analysis on the Mixing LNG Storage was studied too. At last, the visualized program on the complex thermofluidodynamic analysis was developed on the basis of the above analyses. The development of this program becomes to be used to the basic design of the commercial tanks as well as to assure technical skill of the analysis on the thermal stability of the stored LNG in the LNG Storage Tank.

  • PDF

Evaluation of Seismic Performance for Bridge Using Capacity Spectrum Method (역량스펙트럼을 이용한 교량의 내진성능평가)

  • Park, Yeon-Soo;Choi, Sun-Min;Kin, Eung-Rok;Suh, Byoung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.448-455
    • /
    • 2007
  • In 1992, the first design standard of quake proof bridge was established. However, most bridge structures which were constructed without considering earthquake in former times need performance of quakeproof property. Quakeproof analysis in current bridges, is based on analysis of load base which just has strength over the load of simple structures but is not checked through simple comparison of strength performance of structures so that we would like to check that ADRS method is reasonable or not using ADRS method(Accleration-Displacement Response Spectrum Method), a analysis method based on displacement of object of performance test. As the result of that, the capacity spectrum method can avoid complex dynamic analysis in analysis based on loads and it efficiently applies to design verification with normal checking for quakeproof performance and aimed performance of new structures. However we can not consider effects of high modes and it has problem that does not consider falling of performance in structures by repeated load.

  • PDF

On the Pyrolysis of Polymers I. Thermogravimetric Analysis of Polymers (高分子物質의 熱分解에 關한 硏究 (第1報) 熱天秤에 依한 硏究)

  • Chwa-Kyung Sung
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.96-105
    • /
    • 1963
  • The weight decrease curves of 18 kinds of polymers have been measured by thermobalance at the same condition where temperature is increased $1^{\circ}C$ per minutes under nitrogen or air atmosphere. The curves are further differentiated to obtain rate curve of weight decrease. Those curve offer a method to compare relative thermal stability, effects of oxygen or modes of thermal degradation of polymers qualitatively. The curves could be classified into following four types: Polystyrene, polymethylmethacrylate and acetal polymer belong to the first type. Those polymers depolymerize mainly into corresponding monomers, weight decrease curves are steepy up to perfect vaporization of polymers and rate curves show a relatively sharp peak. (Type I) Polyvinyl chloride represents the second type. This polymer decomposes with splitting off of hydrogen chloride. The thermogravimetric curve rises rapidly at first, then level off at the moderate weight decrease and gradually rises. Polyvinyl acetate also belongs to this class. (Type II) The modification of the second type is represented by polyester. The curve at the early stage is less steep, the leveling off at the next stage is less clear and the final rising of the curve is steeper than the normal second type. Polyamide, polyurethane, and polycarbonate belong to this type. (Type II') The thermal decomposition of the third type polymers is more complex than that of others. Various irregular chain scissions including side chain splitting and depolymerization to monomers occur simultaneously. The weight of the polymer decreases gradually and the rate curve does not show sharp peaks. Polyvinyl alcohol and diene polymers belong to this type. (Type III) Generally, polycondensation polymers are more stable toward heat than addition polymers and polymers having aromatic nucleus show good thermal stability. Polymers having tertiary carbon atoms such as polystyrene or polypropylene and acetal resin start decomposition under airatmosphere at the temprature below $50^{\circ}C$ or more of the temperature where the polymers start decomposition under nitrogen atmosphere.

  • PDF

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF