• Title/Summary/Keyword: Complex Images

Search Result 1,009, Processing Time 0.027 seconds

Content Analysis-based Adaptive Filtering in The Compressed Satellite Images (위성영상에서의 적응적 압축잡음 제거 알고리즘)

  • Choi, Tae-Hyeon;Ji, Jeong-Min;Park, Joon-Hoon;Choi, Myung-Jin;Lee, Sang-Keun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.84-95
    • /
    • 2011
  • In this paper, we present a deblocking algorithm that removes grid and staircase noises, which are called "blocking artifacts", occurred in the compressed satellite images. Particularly, the given satellite images are compressed with equal quantization coefficients in row according to region complexity, and more complicated regions are compressed more. However, this approach has a problem that relatively less complicated regions within the same row of complicated regions have blocking artifacts. Removing these artifacts with a general deblocking algorithm can blur complex and undesired regions as well. Additionally, the general filter lacks in preserving the curved edges. Therefore, the proposed algorithm presents an adaptive filtering scheme for removing blocking artifacts while preserving the image details including curved edges using the given quantization step size and content analysis. Particularly, WLFPCA (weighted lowpass filter using principle component analysis) is employed to reduce the artifacts around edges. Experimental results showed that the proposed method outperforms SA-DCT in terms of subjective image quality.

Comparison of Texture Images and Application of Template Matching for Geo-spatial Feature Analysis Based on Remote Sensing Data (원격탐사 자료 기반 지형공간 특성분석을 위한 텍스처 영상 비교와 템플레이트 정합의 적용)

  • Yoo Hee Young;Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.683-690
    • /
    • 2005
  • As remote sensing imagery with high spatial resolution (e.g. pixel resolution of 1m or less) is used widely in the specific application domains, the requirements of advanced methods for this imagery are increasing. Among many applicable methods, the texture image analysis, which was characterized by the spatial distribution of the gray levels in a neighborhood, can be regarded as one useful method. In the texture image, we compared and analyzed different results according to various directions, kernel sizes, and parameter types for the GLCM algorithm. Then, we studied spatial feature characteristics within each result image. In addition, a template matching program which can search spatial patterns using template images selected from original and texture images was also embodied and applied. Probabilities were examined on the basis of the results. These results would anticipate effective applications for detecting and analyzing specific shaped geological or other complex features using high spatial resolution imagery.

Virtual Dissection System of Cadaver Heart Using 3-Dimensional Image

  • Chung, Min-Suk;Lee, Je-Man;Kim, Min-Koo;Park, Seung-Kyu
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.357-360
    • /
    • 1997
  • For medical students and doctors, knowledge of the 3-dimensional (3D) structure of the heart is very important in diagnosis and treatment of the heart diseases. 2-dimensional (2D) tools (e.g. anatomy book) or classical 3D tools (e.g. plastic model) are not sufficient or understanding the complex structures of the heart. Moreover, it is not always guaranteed to dissect the heart of cadaver when it is necessary. To overcome this problem, virtual dissection systems of the heart have been developed. But these systems are not satisfactory since they are made of radiographs; they are not true 3D images; they can not be used to dissect freely; or they can only be operated on the workstation. It is also necessary to make the dissection systems incorporating the various races and tribes because of the organ's difference according to race and tribe. This study was intended to make the 3D image of the heart from a Korean cadaver, and to establish a virtual dissection system of the heart with a personal computer. The procedures or manufacturing this system were as follows. 1. The heart from a Korean adult cadaver was embedded with gelatin solution, and serially cross-sectioned at 1mm-thickness on a meat slicer. Pictures or 153 cross-sectioned specimens were inputted into the computer using a digital camera ($756{\times}504$ resolution, true color). 2. The alignment system was established by means of the language of IDL, and applied to align 2D images of the heart. In each of 2D images, closed curves lining clean and dirty blood pathways were drawn manually on the CorelDRAW program. 3. Using the language of IDL, the 3D image and the virtual dissection system of the heart were constructed. The virtual dissection system of the heart allowed or ree rotation, any-directional sectioning, and selected visualization of the heart's structure. This system is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

Observations of the Cyanobacteria Synechocystis sp. PCC 6803 using Cryo-Methods and Cryo-SEM (Cryo-Methods와 Cryo-SEM을 이용한 Cyanobacteria, Synechocystis sp. PCC 6803 미세구조 관찰)

  • Lee, Eun-Ju;Moon, Yoon-Jung;Oh, Hyun-Woo;Kim, Su-Jin;Chung, Young-Ho;Kweon, Hee-Seok;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • Cryo-SEM which enables specimens to be observed in frozen form has been used to study liquid specimens in their native states. Cryo-methods, sample preparation for cryo-SEM, are quite complex and involve several discrete but vitally interconnected steps which are rapid cooling, fracturing, sectioning, etching and coating. It is important to select practical techniques and to optimize conditions of each steps considering analytic purpose and specimen characters, viz., sample dimension, water contents. In this study, etching methods and sample preparation before freezing had been studied for observation of cyanobacteria, Synechocystis sp. PCC 6803 using cryo-SEM and their cryo-SEM images were compared to Conventional SEM (CSEM) images treated by chemical fixation. We could observe the improved morphological images of the pili of the surface and membranes of Synechocystis sp. PCC 6803 and the three-dimensional architectures of their biofilm, which were difficult to observe using chemical fixation and CSEM. These results suggest that cryo-methods/cryo-SEM are useful techniques for morphological study of biological specimen.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Deep Learning-based SISR (Single Image Super Resolution) Method using RDB (Residual Dense Block) and Wavelet Prediction Network (RDB 및 웨이블릿 예측 네트워크 기반 단일 영상을 위한 심층 학습기반 초해상도 기법)

  • NGUYEN, HUU DUNG;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.703-712
    • /
    • 2019
  • Single image Super-Resolution (SISR) aims to generate a visually pleasing high-resolution image from its degraded low-resolution measurement. In recent years, deep learning - based super - resolution methods have been actively researched and have shown more reliable and high performance. A typical method is WaveletSRNet, which restores high-resolution images through wavelet coefficient learning based on feature maps of images. However, there are two disadvantages in WaveletSRNet. One is a big processing time due to the complexity of the algorithm. The other is not to utilize feature maps efficiently when extracting input image's features. To improve this problems, we propose an efficient single image super resolution method, named RDB-WaveletSRNet. The proposed method uses the residual dense block to effectively extract low-resolution feature maps to improve single image super-resolution performance. We also adjust appropriated growth rates to solve complex computational problems. In addition, wavelet packet decomposition is used to obtain the wavelet coefficients according to the possibility of large scale ratio. In the experimental result on various images, we have proven that the proposed method has faster processing time and better image quality than the conventional methods. Experimental results have shown that the proposed method has better image quality by increasing 0.1813dB of PSNR and 1.17 times faster than the conventional method.

Comparison of Visualization Enhancement Techniques for Himawari-8 / AHI-based True Color Image Production (Himawari-8/AHI 기반 True color 영상 생산을 위한 시각화 향상 기법 비교 연구)

  • Han, Hyeon-Gyeong;Lee, Kyeong-Sang;Choi, Sungwon;Seo, Minji;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Kim, Honghee;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.483-489
    • /
    • 2019
  • True color images display colors similar to natural colors. This has the advantage that it is possible to monitor rapidly the complex earth atmosphere phenomenon and the change of the surface type. Currently, various organizations are producing true color images. In Korea, it is necessary to produce true color images by replacing generations with next generation weather satellites. Therefore, in this study, visual enhancement for true color image production was performed using Top of Atmosphere (TOA) data of Advanced Himawari Imager (AHI) sensor mounted on Himawari-8 satellite. In order to improve the visualization, we performed two methods of Nonlinear enhancement and Histogram equalization. As a result, Histogram equalization showed a strong bluish image in the region over $70^{\circ}$ Solar Zenith Angle (SZA) compared to the Nonlinear enhancement and nonlinear enhancement technique showed a reddish vegetation area.

Anomaly Detection Methodology Based on Multimodal Deep Learning (멀티모달 딥 러닝 기반 이상 상황 탐지 방법론)

  • Lee, DongHoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.101-125
    • /
    • 2022
  • Recently, with the development of computing technology and the improvement of the cloud environment, deep learning technology has developed, and attempts to apply deep learning to various fields are increasing. A typical example is anomaly detection, which is a technique for identifying values or patterns that deviate from normal data. Among the representative types of anomaly detection, it is very difficult to detect a contextual anomaly that requires understanding of the overall situation. In general, detection of anomalies in image data is performed using a pre-trained model trained on large data. However, since this pre-trained model was created by focusing on object classification of images, there is a limit to be applied to anomaly detection that needs to understand complex situations created by various objects. Therefore, in this study, we newly propose a two-step pre-trained model for detecting abnormal situation. Our methodology performs additional learning from image captioning to understand not only mere objects but also the complicated situation created by them. Specifically, the proposed methodology transfers knowledge of the pre-trained model that has learned object classification with ImageNet data to the image captioning model, and uses the caption that describes the situation represented by the image. Afterwards, the weight obtained by learning the situational characteristics through images and captions is extracted and fine-tuning is performed to generate an anomaly detection model. To evaluate the performance of the proposed methodology, an anomaly detection experiment was performed on 400 situational images and the experimental results showed that the proposed methodology was superior in terms of anomaly detection accuracy and F1-score compared to the existing traditional pre-trained model.

Lightweight Super-Resolution Network Based on Deep Learning using Information Distillation and Recursive Methods (정보 증류 및 재귀적인 방식을 이용한 심층 학습법 기반 경량화된 초해상도 네트워크)

  • Woo, Hee-Jo;Sim, Ji-Woo;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.378-390
    • /
    • 2022
  • With the recent development of deep composite multiplication neural network learning, deep learning techniques applied to single-image super-resolution have shown good results, and the strong expression ability of deep networks has enabled complex nonlinear mapping between low-resolution and high-resolution images. However, there are limitations in applying it to real-time or low-power devices with increasing parameters and computational amounts due to excessive use of composite multiplication neural networks. This paper uses blocks that extract hierarchical characteristics little by little using information distillation and suggests the Recursive Distillation Super Resolution Network (RDSRN), a lightweight network that improves performance by making more accurate high frequency components through high frequency residual purification blocks. It was confirmed that the proposed network restores images of similar quality compared to RDN, restores images 3.5 times faster with about 32 times fewer parameters and about 10 times less computation, and produces 0.16 dB better performance with about 2.2 times less parameters and 1.8 times faster processing time than the existing lightweight network CARN.

Research of Water-related Disaster Monitoring Using Satellite Bigdata Based on Google Earth Engine Cloud Computing Platform (구글어스엔진 클라우드 컴퓨팅 플랫폼 기반 위성 빅데이터를 활용한 수재해 모니터링 연구)

  • Park, Jongsoo;Kang, Ki-mook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1761-1775
    • /
    • 2022
  • Due to unpredictable climate change, the frequency of occurrence of water-related disasters and the scale of damage are also continuously increasing. In terms of disaster management, it is essential to identify the damaged area in a wide area and monitor for mid-term and long-term forecasting. In the field of water disasters, research on remote sensing technology using Synthetic Aperture Radar (SAR) satellite images for wide-area monitoring is being actively conducted. Time-series analysis for monitoring requires a complex preprocessing process that collects a large amount of images and considers the noisy radar characteristics, and for this, a considerable amount of time is required. With the recent development of cloud computing technology, many platforms capable of performing spatiotemporal analysis using satellite big data have been proposed. Google Earth Engine (GEE)is a representative platform that provides about 600 satellite data for free and enables semi real time space time analysis based on the analysis preparation data of satellite images. Therefore, in this study, immediate water disaster damage detection and mid to long term time series observation studies were conducted using GEE. Through the Otsu technique, which is mainly used for change detection, changes in river width and flood area due to river flooding were confirmed, centered on the torrential rains that occurred in 2020. In addition, in terms of disaster management, the change trend of the time series waterbody from 2018 to 2022 was confirmed. The short processing time through javascript based coding, and the strength of spatiotemporal analysis and result expression, are expected to enable use in the field of water disasters. In addition, it is expected that the field of application will be expanded through connection with various satellite bigdata in the future.