• 제목/요약/키워드: Complex Failure Prediction

검색결과 41건 처리시간 0.031초

Event tree하에서 베이지안 기법을 이용한 신뢰도 예측 (Bayesian reliability prediction under event tree)

  • 박철순;전치혁;양희중;장수영
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1993년도 추계학술대회발표논문집; 서강대학교, 서울; 25 Sep. 1993
    • /
    • pp.24-30
    • /
    • 1993
  • When modeling a complex system we use an event tree to analyze propagation of failure. An event tree cannot represent the statistical interrelationships among parameters, but it can be represented as a statistically identical influence diagram so that parameter updating can be easily performed. After updating parameters we can calculate posterior distribution of the failure rate for each path. But exact distribution requires considerably complex numerical integration. We propose an approximation method to calculate the posterior and derive the predictive distribution of the time to next failure. Finally we introduce the system which implements our methodology.

  • PDF

Study on failure mode prediction of reinforced concrete columns based on class imbalanced dataset

  • Mingyi Cai;Guangjun Sun;Bo Chen
    • Earthquakes and Structures
    • /
    • 제27권3호
    • /
    • pp.177-189
    • /
    • 2024
  • Accurately predicting the failure modes of reinforced concrete (RC) columns is essential for structural design and assessment. In this study, the challenges of imbalanced datasets and complex feature selection in machine learning (ML) methods were addressed through an optimized ML approach. By combining feature selection and oversampling techniques, the prediction of seismic failure modes in rectangular RC columns was improved. Two feature selection methods were used to identify six input parameters. To tackle class imbalance, the Borderline-SMOTE1 algorithm was employed, enhancing the learning capabilities of the models for minority classes. Eight ML algorithms were trained and fine-tuned using k-fold shuffle split cross-validation and grid search. The results showed that the artificial neural network model achieved 96.77% accuracy, while k-nearest neighbor, support vector machine, and random forest models each achieved 95.16% accuracy. The balanced dataset led to significant improvements, particularly in predicting the flexure-shear failure mode, with accuracy increasing by 6%, recall by 8%, and F1 scores by 7%. The use of the Borderline-SMOTE1 algorithm significantly improved the recognition of samples at failure mode boundaries, enhancing the classification performance of models like k-nearest neighbor and decision tree, which are highly sensitive to data distribution and decision boundaries. This method effectively addressed class imbalance and selected relevant features without requiring complex simulations like traditional methods, proving applicable for discerning failure modes in various concrete members under seismic action.

3차원 수리모형을 이용한 농업용 저수지의 파괴확률에 따른 하류부 피해예측 모델 개발 (Development of Downstream Flood Damage Prediction Model Based on Probability of Failure Analysis in Agricultural Reservoir)

  • 전정배;윤성수;최원
    • 한국농공학회논문집
    • /
    • 제62권3호
    • /
    • pp.95-107
    • /
    • 2020
  • The failures of the agricultural reservoirs that most have more than 50 years, have increased due to the abnormal weather and localized heavy rains. There are many studies on the prediction of damage from reservoir collapse, however, these referenced studies focused on evaluating reservoir collapse as single unit and applyed to one and two dimensional hydrodynamic model to identify the fluid flow. This study is to estimate failure probability of spillway, sliding, bearing capacity and overflowing targeting small and medium scale agricultural reservoirs. In addition, we calculate failure probability by complex mode. Moreover, we predict downstream flood damage by reservoir failure applying three dimensional hydrodynamic model. When the reservoir destroyed, the results are as follows; (1) the flow of fluid proceeds to same stream direction and to a lower slope by potential and kinetic energy; (2) The predicted damage in downstream is evaluated that damage due to building destruction is the highest.

응답면 기법에 의한 아치교량 시스템의 붕괴 위험성평가(I): 요소신뢰성 (Risk Assessment for the Failure of an Arch Bridge System Based upon Response Surface Method(I): Component Reliability)

  • 조태준;방명석
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.74-81
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method(RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method.

핵연료 파손 예측을 위한 경험적 자료와 결정론적 모델의 접합 방법 (A Study on the Method of Combining Empirical Data and Deterministic Model for Fuel Failure Prediction)

  • Cho, Byeong-Ho;Yoon, Young-Ku;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • 제19권4호
    • /
    • pp.233-241
    • /
    • 1987
  • 본 연구는 제한된 수의 핵연료의 경험적 파손자료로부터 핵연료 파손 확률을 현실적으로 예측하기 위해 결정론적 모델로부터의 파손화률 예측치와 실제 경험적 자료로부터의 파손 확률 예측치를 접합하는 방법을 시도하였다. 이 접합 방법에 의한 파손 화률 예측치는 결정론적 모델 또는 경험적 파손 자료로부터의 독립적인 예측치보다 신뢰도가 높다. 본 연구에서는 핵연료 성능 예측코드인 SPEAR의 방법론을 응용한 핵연료 파손 패턴의 체계적 발견법 (hierarchical pattern discovery)이 접합 모델에서의 결정론적 모델로부터의 예측치에 대한 가중치와 패턴 경계를 체계적으로 찾기 위해 고안되었다. 이 연구에서 개발된 접합 방법을 PROFIT모델과 경험적 파손자료를 이용하여 CANDU형 핵연료 재장전중 출력 상승에 의해 수반되는 핵연료파손 예측에 적응시켜 보았다.

  • PDF

체계신뢰성 평가와 비교한 응답면기법에 의한 교량시스템의 위험성평가 (Risk Assessment for a Bridge System Based upon Response Surface Method Compared with System Reliability)

  • 조태준;문제우;김종태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.295-300
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significant]y reduced time and efforts compared with the previous permutation method or system reliability analysis method.

  • PDF

Prediction of Dynamic Expected Time to System Failure

  • Oh, Deog-Yeon;Lee, Chong-Chul
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.244-250
    • /
    • 1997
  • The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent Property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability's or components are combined, which results in the dynamic MTTF or system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not.

  • PDF

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.

머신러닝 기반 공동주택 분양가 예측모델 개발 기초연구 (A Basic Study on Sale Price Prediction Model of Apartment Building Projects using Machine Learning Technique)

  • 손승현;김지명;한범진;나영주;김태희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.151-152
    • /
    • 2021
  • The sale price of apartment buildings is a key factor in the success or failure of apartment projects, and the factors that affect the sale price of apartments vary widely, including location, environmental factors, and economic conditions. Existing methods of predicting the sale price do not reflect the nonlinear characteristics of apartment prices, which are determined by the complex impact factors of reality, because statistical analysis is conducted under the assumption of a linear model. To improve these problems, a new analysis technique is needed to predict apartment sales prices by complex nonlinear influencing factors. Using machine learning techniques that have recently attracted attention in the field of engineering, it is possible to predict the sale price reflecting the complexity of various factors. Therefore, this study aims to conduct a basic study for the development of a machine learning-based prediction model for apartment sale prices.

  • PDF

붕괴모드 조합 예측법에 의한 PSC사장교의 위험도평가 (Probabilistic Risk Assessment of a Cable-Stayed Bridge Based on the Prediction Method for the Combination of Failure Modes)

  • 박미연;조효남;조태준
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.647-657
    • /
    • 2006
  • 허용응력설계법과 극한한계 상태 설계법에 근거한 케이블과 보강형을 갖는 PSC 사장교의 예를 통해서 통계학적 확률분포를 고려한 확률론적인 위험성을 평가하였다. 사용성 한계상태 및 극한 한계상태에서의 케이블요소의 파괴확률과 거더의 최대 정모멘트. 부모멘트 발생단면, 그리고 최대전단력의 작용단면에서 각각의 요소 파괴 확률을 설계변수의 응답면에서 검토하였다. 응답면 기법(RSM)은 복잡한 다자유도 구조물에서 MCS를 사용하여 얻을 수 없는 상대적으로 매우 작은 파괴 확률값을 얻기 위해 사용이 가능할 뿐만 아니라, FOSM으로 쉽게 얻을 수 없는 한계상태방정식의 미분형태에도 성공적으로 적용이 가능 하다. 케이블과 보강형으로 구성된 병렬저항구조를 시스템 해석을 위해 각각 직렬구조로 연결하여 전체구조물의 체계신뢰성을 평가하고, 제안된 붕괴모드조합 예측값과 비교분석하였다. 제안된 붕괴모드의 조합에 의한 파괴확률검토는 조건부 파괴에 대한 동일한 발생확률을 구하며, 순열방법보다 개선된 시간비용과 효율성을 제공하며, 상하한계파괴확률을 구하는 체계 신뢰성해석에서 검토되지 않는 요소파괴의 조합에 의한 시스템의 위험성 검토를 제공한다.