• Title/Summary/Keyword: Complex Disaster

Search Result 331, Processing Time 0.023 seconds

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

Drought evaluation using unstructured data: a case study for Boryeong area (비정형 데이터를 활용한 가뭄평가 - 보령지역을 중심으로 -)

  • Jung, Jinhong;Park, Dong-Hyeok;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1203-1210
    • /
    • 2020
  • Drought is caused by a combination of various hydrological or meteorological factor, so it is difficult to accurately assess drought event, but various drought indices have been developed to interpret them quantitatively. However, the drought indexes currently being used are calculated from the lack of a single variable, which is a problem that does not accurately determine the drought event caused by complex causes. Shortage of a single variable may not be a drought, but it is judged to be a drought. On the other hand, research on developing indices using unstructured data, which is widely used in big data analysis, is being carried out in other fields and proven to be superior. Therefore, in this study, we intend to calculate the drought index by combining unstructured data (news data) with weather and hydrologic information (rainfall and dam inflow) that are being used for the existing drought index, and to evaluate the utilization of drought interpretation through verification of the calculated drought index. The Clayton Copula function was used to calculate the joint drought index, and the parameter estimation was used by the calibration method. The analysis showed that the drought index, which combines unstructured data, properly expresses the drought period compared to the existing drought index (SPI, SDI). In addition, ROC scores were calculated higher than existing drought indices, making them more useful in drought interpretation. The joint drought index calculated in this study is considered highly useful in that it complements the analytical limits of the existing single variable drought index and provides excellent utilization of the drought index using unstructured data.

Analysis of Time Series Changes in the Surrounding Environment of Rural Local Resources Using Aerial Photography and UAV - Focousing on Gyeolseong-myeon, Hongseong-gun - (항공사진과 UAV를 이용한 농촌지역자원 주변환경의 시계열 변화 분석 - 충청남도 홍성군 결성면을 중심으로 -)

  • An, Phil-Gyun;Eom, Seong-Jun;Kim, Yong-Gyun;Cho, Han-Sol;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.55-70
    • /
    • 2021
  • In this study, in the field of remote sensing, where the scope of application is rapidly expanding to fields such as land monitoring, disaster prediction, facility safety inspection, and maintenance of cultural properties, monitoring of rural space and surrounding environment using UAV is utilized. It was carried out to verify the possibility, and the following main results were derived. First, the aerial image taken with an unmanned aerial vehicle had a much higher image size and spatial resolution than the aerial image provided by the National Geographic Information Service. It was suitable for analysis due to its high accuracy. Second, the more the number of photographed photos and the more complex the terrain features, the more the point cloud included in the aerial image taken with the UAV was extracted. As the amount of point cloud increases, accurate 3D mapping is possible, For accurate 3D mapping, it is judged that a point cloud acquisition method for difficult-to-photograph parts in the air is required. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. Fourth, the digital elevation model(DEM) produced with aerial image taken with an UAV can visually express the altitude and shape of the topography of the study site, so it can be used as data to predict the effects of topographical changes due to changes in rural space. Therefore, it is possible to utilize various results using the data included in the aerial image taken by the UAV. In this study, the superiority of images acquired by UAV was verified by comparison with existing images, and the effect of 3D mapping on rural space monitoring was visually analyzed. If various types of spatial data such as GIS analysis and topographic map production are collected and utilized using data that can be acquired by unmanned aerial vehicles, it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation (산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증)

  • Sunghyun, Min;Sukhee, Yoon;Myongsoo, Won;Junghwa, Chun;Keunchang, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.244-255
    • /
    • 2022
  • This study estimated and evaluated the high resolution (1km) gridded mountain meteorology data of daily mean, maximum and minimum temperature based on ASOS (Automated Surface Observing System), AWS (Automatic Weather Stations) and AMOS (Automatic Mountain Meteorology Observation System) in South Korea. The ASOS, AWS, and AMOS meteorology data which were located above 200m was classified as mountainous area. And the ASOS, AWS, and AMOS meteorology data which were located under 200m was classified as non-mountainous area. The bias-correction method was used for correct air temperature over complex mountainous area and the performance of enhanced daily coefficients based on the AMOS and mountainous area observing meteorology data was evaluated using the observed daily mean, maximum and minimum temperature. As a result, the evaluation results show that RMSE (Root Mean Square Error) of air temperature using the enhanced coefficients based on the mountainous area observed meteorology data is smaller as 30% (mean), 50% (minimum), and 37% (maximum) than that of using non-mountainous area observed meteorology data. It indicates that the enhanced weather coefficients based on the AMOS and mountain ASOS can estimate mean, maximum, and minimum temperature data reasonably and the temperature results can provide useful input data on several climatological and forest disaster prediction studies.

Retrospective analysis of the urban inundation and the impact assessment of the flood barrier using H12 model (H12 모형을 이용한 도시침수원인 및 침수방어벽의 효과 분석)

  • Kim, Bomi;Noh, Seong Jin;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.345-356
    • /
    • 2022
  • A severe flooding occured at a small urban catchment in Daejeon-si South Korea on July 30, 2020 causing significant loss of property (inundated 78 vehicles and two apartments) and life (one casualty and 56 victims). In this study, a retrospective analysis of the inundation event was implemented using a physically-based urban flood model, H12 with high-resolution data. H12 is an integrated 1-dimensional sewer network and 2-dimensional surface flow model supported by hybrid parallel techniques to efficiently deal with high-resolution data. In addition, we evaluated the impact of the flooding barriers which were installed after the flood disaster. As a result, it was found that the inundation was affected by a combination of multiple components including the shape of the basin, the low terrain of the inundation area located in the downstream part of the basin, and lack of pipe capacity to drain discharge from the upstream during heavy rain. The impact of the flooding barriers was analyzed by modeling with and without barriers on the high-resolution terrain input data. It was evaluated that the flood barriers effectively lower the water depth in the apartment complex. This study demonstrates capability of high-resolution physically-based urban modeling to quantitatively assess the past inundation event and the impact of the reduction measures.

Proposal for Research Model of High-Function Patrol Robot using Integrated Sensor System (통합 센서 시스템을 이용한 고기능 순찰 로봇의 연구모델 제안)

  • Byeong-Cheon Yoo;Seung-Jung Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2024
  • In this dissertation, a we designed and implemented a patrol robot that integrates a thermal imaging camera, speed dome camera, PTZ camera, radar, lidar sensor, and smartphone. This robot has the ability to monitor and respond efficiently even in complex environments, and is especially designed to demonstrate high performance even at night or in low visibility conditions. An orbital movement system was selected for the robot's mobility, and a smartphone-based control system was developed for real-time data processing and decision-making. The combination of various sensors allows the robot to comprehensively perceive the environment and quickly detect hazards. Thermal imaging cameras are used for night surveillance, speed domes and PTZ cameras are used for wide-area monitoring, and radar and LIDAR are used for obstacle detection and avoidance. The smartphone-based control system provides a user-friendly interface. The proposed robot system can be used in various fields such as security, surveillance, and disaster response. Future research should include improving the robot's autonomous patrol algorithm, developing a multi-robot collaboration system, and long-term testing in a real environment. This study is expected to contribute to the development of the field of intelligent surveillance robots.

Application of deep learning method for decision making support of dam release operation (댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가)

  • Jung, Sungho;Le, Xuan Hien;Kim, Yeonsu;Choi, Hyungu;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1095-1105
    • /
    • 2021
  • The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.

Experimental and Numerical Study on the Effect of the Rain Infiltration with the Increase of Surface Temperature (지표면 온도상승이 빗물의 토양침투에 미치는 영향에 대한 실험 및 수치 해석적 연구)

  • Shin, Nara;Shin, Mi Soo;Jang, Dong Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.422-429
    • /
    • 2013
  • It is generally known that the increase of the Earth surface temperature due to the global warming together with the land desertification by rapid urban development has caused severe climate and weather change. In desert or desertification land, it is observed that there are always severe flooding phenomena, even if desert sand has the high porosity, which could be believed as the favorable condition of rain water infiltration into ground water. The high runoff feature causes possibly another heavy rain by quick evaporation with the depletion of underground water due to the lack of infiltration. The basic physics of desert flooding is reasonably assumed due to the thermal buoyancy of the higher temperature of the soil temperature than that of the rain drop. Considering the importance of this topic associated with water resource management and climate disaster prevention, no systematic investigation has, however, been reported in literature. In this study, therefore, a laboratory scale experiment together with the effort of numerical calculation have been performed to evaluate quantitatively the basic hypothesis of run-off mechanism caused by the increase of soil temperature. To this end, first, of all, a series of experiment has been made repeatedly with the change of soil temperature with well-sorted coarse sand having porosity of 35% and particle diameter, 2.0 mm. In specific, in case 1, the ground surface temperature was kept at $15^{\circ}C$, while in case 2 that was high enough at $70^{\circ}C$. The temperature of $70^{\circ}C$ was tested as this try since the informal measured surface temperature of black sand in California's Coachella Valley up to at 191 deg. $^{\circ}F$ ($88^{\circ}C$). Based on the experimental study, it is observed that the amount of runoff at $70^{\circ}C$ was higher more than 5% compared to that at $15^{\circ}C$. Further, the relative amount of infiltration by the decrease of the surface temperature from 70 to $15^{\circ}C$ is about more than 30%. The result of numerical calculation performed was well agreed with the experimental data, that is, the increase of runoff in calculation as 4.6%. Doing this successfully, a basic but important research could be made in the near future for the more complex and advanced topic for this topic.

Analysis of Building Characteristics and Temporal Changes of Fire Alarms (건물 특성과 시간적 변화가 소방시설관리시스템의 화재알람에 미치는 영향 분석 연구)

  • Lim, Gwanmuk;Ko, Seoltae;Kim, Yoosin;Park, Keon Chul
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.83-98
    • /
    • 2021
  • The purpose of this study to find the factors influencing the fire alarms using IoT firefighting facility management system data of Seoul Fire & Disaster Headquarters, and to present academic implications for establishing an effective prevention system of fire situation. As the number of high and complex buildings increases and former bulidings are advanced, the fire detection facilities that can quickly respond to emergency situations are also increasing. However, if the accuracy of the fire situation is incorrectly detected and the accuracy is lowered, the inconvenience of the residents increases and the reliability decreases. Therefore, it is necessary to improve accuracy of the system through efficient inspection and the internal environment investigation of buildings. The purpose of this study is to find out that false detection may occur due to building characteristics such as usage or time, and to aim of emphasizing the need for efficient system inspection and controlling the internal environment. As a result, it is found that the size(total area) of the building had the greatest effect on the fire alarms, and the fire alarms increased as private buildings, R-type receivers, and a large number of failure or shutoff days. In addition, factors that influencing fire alarms were different depending on the main usage of the building. In terms of time, it was found to follow people's daily patterns during weekdays(9 am to 6 pm), and each peaked around 10 am and 2 pm. This study was claimed that it is necessary to investigate the building environment that caused the fire alarms, along with the system internal inspection. Also, it propose additional recording of building environment data in real-time for follow-up research and system enhancement.

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.