• Title/Summary/Keyword: Complex Carbide

Search Result 26, Processing Time 0.029 seconds

A Study on Synthesis and Mechanical Properties of (Ti.W)C Complex Carbide by SHS Chemical Furnace (SHS 화학로에 의한 (Ti.W)C 복탄화물의 합성 및 기계적 특성에 관한 연구)

  • 이형복;오유근;이풍헌;장동환
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.418-424
    • /
    • 1996
  • (Ti.W)C complex carbide was synthesized by self-propagating high temperature synthesis (SHS) chemical furnace. Attempt to find the optimal condition for synthesis of (Ti.W)C the effects of molar ratio of Ti:W:C on the synthesized powders and mechanical properties were investigated, Optimum molar ratio of these synthe-sized powder was Ti:W:C=0.7:0.2:1.0 The bulk density M,O.R Hardness Fracture toughness of (Ti.W)C complex carbide sintered at 200$0^{\circ}C$ for 60 min by hot-pressing under the pressure of 20 MPa were 7.6g/cm3, 475 MPa, 17,.7 GPa respectively.

  • PDF

Preceramic Polymer Technology for High Temperature Ceramic Composite and its Application (초고온복합소재용 프리세라믹폴리머 합성 및 응용기술)

  • Lee, Yoonjoo;Kim, Younghee;Bae, Seong Gun;Lee, Hyeon Myoung;Cho, Kwang Youn;Kwon, Woo Teck;Kim, Soo Ryong;Riu, Doh Hyung;Shin, Dong Geun
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.102-107
    • /
    • 2017
  • The preceramic polymer can realize a variety of complex ceramic structures that can not be obtained by conventional ceramic processes. Polycarbosilane, which is a typical preceramic polymer, can control the molecular structure, molecular weight and molecular weight distribution for preparing complex morphology and microstructure of SiC ceramics, including SiC fiber. In this paper, synthesis and molecular structure control technique of polycarbosilane is explained. The silicon carbide fiber prepared by melt spinning, stabilization and heat treatment, and ceramic fiber composites technology made by PIP process are also discussed. In addition, we introduce an example of the development of a complex silicon carbide material such as a silicon carbide hollow fiber having a nanoporous structure.

Mechanical Properties of Non-cement Matrix Utilizing the Circulating Fluidized Bed Combustion Boiler Fly Ash and Dyeing Sludge Carbide (염색슬러지 탄화물과 순환 유동층 연소 보일러 플라이애시를 활용한 무시멘트 경화체의 역학적 특성)

  • Kim, Tae-Hyun;Lee, Seung-Ho;Lee, Yong;Shin, Jin-Hyun;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.425-430
    • /
    • 2016
  • Both rapid industrial development and society has achieved more comfortable life. But, behind this facts of this industrial development have current pictures that occur global warming and much more by-products by environmental pollution. Therefore, this study used BFS and CFA as by-products to reduce cement usage emitted at a high rate of $CO_2$ gas, to examine sludge recycling strategy more than 200,000ton emitted at local dyeing complex, we suggest basic data research about non-cement matrix properties of utilizing dyeing sludge carbide. As a result, the more dyeing sludge carbide replacement ratio gets higher, the more air content and flow rise. Also, as the dyeing sludge carbide replacement ratio increase more, flexural strength and compressive strength go down.

Prediction of crack trajectory by the boundary element method

  • Bush, M.B.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.575-588
    • /
    • 1999
  • A boundary element method is applied to the analysis of crack trajectory in materials with complex microstructure, such as discontinuously reinforced composite materials, and systems subjected to complex loading, such as indentation. The path followed by the crack(s) has non-trivial geometry. A study of the stress intensity factors and fracture toughness of such systems must therefore be accompanied by an analysis of crack trajectory. The simulation is achieved using a dual boundary integral method in planar problems, and a single boundary integral method coupled with substructuring in axisymmetric problems. The direction of crack propagation is determined using the maximum mechanical energy release rate criterion. The method is demonstrated by application to (i) a composite material composed of components having the elastic properties of aluminium (matrix) and silicon carbide (reinforcement), and (ii) analysis of contact damage induced by the action of an indenter on brittle materials. The chief advantage of the method is the ease with which problems having complex geometry or loading (giving rise to complex crack trajectories) can be treated.

A Study of the Effect of Tungsten Oxide on W, WC Powder and Alloy Properties

  • Jiang, Cijin;Shen, Paul;Wang, Huan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.654-655
    • /
    • 2006
  • This is about the effects deoxidization, carbonization and alloying preparation on fine grain W, WC, and grade YG8 powder reduced by "yellow tungsten oxide" and "blue tungsten oxide". The result indicates that yellow tungsten has single composition and blue tungsten oxide has complex composition. With this feature, yellow tungsten oxide got better uniformity and concentration distribution on fine particle size W and WC powder than blue tungsten oxide's. The grade alloy YG8 that made of this W or WC powder has uniform alloy construction, concentrated WC grain distribution and better alloy properties.

  • PDF

Effects of Si and Mo on the Temperature-Dependent Properties of High Si High Mo Ductile Cast Irons (고규소 고몰리브덴 구상흑연주철의 온도 의존 특성에 미치는 규소와 몰리브덴의 영향)

  • Choe, Kyeong-Hwan;Lee, Sang-Mok;Kim, Myung-Ho;Yun, Sang-Weon;Lee, Kyong-Whoan
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.257-264
    • /
    • 2009
  • The effects of silicon and molybdenum on the temperature-dependent properties of high silicon and high molybdenum ductile cast iron were investigated. Microstructure was composed of ferrite, cell boundary complex carbide, carbide precipitated in the grain and graphite. The number and size of carbide decreased with the increase of silicon content and increased with the increase of molybdenum content, however, the size of cell boundary carbide increased above 0.81wt%Mo. The room temperature tensile strength increased with the increase of silicon and molybdenum contents. That did not increase with the latter with more than 0.8wt%. Meanwhile the high temperature tensile strength showed the similar trend to that of room temperature one, that of the specimen with 0.55wt%Mo was the highest. The $A_1$ transformation temperature increased with the silicon and molybdenum contents, and showed similar tendency with the variation of strength. It was discussed due to the solubility limit of Molybdenum in ferrite, of which value was assumed to be in the vicinity of 0.81wt%Mo. The weight after oxidation at 1,173K showed the result caused by the difference in solubility of molybdenum in the matrix. That and the thickness change after oxidation did not show any consistent trend with the silicon and molybdenum contents.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.10a
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

Analysis of Cutter Orientation when Ball Nose End Milling Nickel Based Superalloys (니켈계 합금의 볼엔드밀 가공에서 절삭 방향에 따른 영향)

  • Lee, Deuk-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2496-2501
    • /
    • 2000
  • High speed ball end milling is attracting interest in the aerospace industry for the machining of complex 31) airfoil surfaces in nickel based superalloys, Experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness, when high speed ball end milling nickel based supperalloy(lnconel 718). Dry cutting was performed using 8min diameter solid carbide cutters coated with either TiA1N or CrN for the workpiece mounted at an angle of 45˚ from the cutter axis. A horizontal downwards cutting orientation provided the best tool life with cut lengths~50% longer than for all other directions. Evaluation of cutting forces and associated spectrum analysis of results indicated that cutters employed in a horizontal downwards direction produced the least vibration.