• Title/Summary/Keyword: Complete reuse

Search Result 36, Processing Time 0.023 seconds

Techniques to Transform EJB 2.1 Components to EJB 3.0 for Performance Improvement and Component Reusability (컴포넌트의 성능향상과 재사용을 위한 EJB 2.1 컴포넌트에서 EJB 3.0로의 변환기법)

  • Lee, Hoo-Jae;Kim, Ji-Hyeok;Rhew, Sung-Yul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.261-272
    • /
    • 2009
  • The EJB 3.0 specifications, which were improved in terms of performance and ease of development, were recently announced. Accordingly, for the EJB 3.0 application environment, developers generally prefer the gradual transformation of components whose performance must be improved to the complete transformation of all the EJB 2.1 components into EJB 3.0 components. Previous studies, however, did not consider the service of the application and did not ensure the compatibility and reusability of the components in the full replacement of EJB 3.0 due to the transformation using different specifications. This study proposed three transformation techniques that consider the service supported in the existing application, wherein the compatibility and reusability of the components are ensured in the case of the full replacement of EJB 3.0. The proposed transformation techniques are techniques for gradual transformation, such as direct transformation that directly connects components, indirect transformation that uses the EJB connector, and indirect template transformation wherein the template pattern is applied to the indirect transformation. The proposed transformation techniques were verified by comparing the reusability and processing capability of the components per second, and the standards for selecting a technique were provided based on the characteristics of the transformation into EJB 3.0 that were found in this study.

Development and Application of Robust Decision Making Technique Considering Uncertainty of Climatic Change Scenarios (기후변화 시나리오의 불확실성을 고려하기위한 로버스트 의사결정 기법의 개발 및 적용)

  • Jun, Sang-Mook;Chung, Eun-Sung;Lee, Sang-Ho;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.897-907
    • /
    • 2013
  • Climate change is expected to worsen the depletion of streamflow in urban watershed. In this study, we therefore considered the treated wastewater (TWW) use as an adaptation strategy and devised a framework to identify prioritized areas for TWW use. An integrated framework that includes hydrological factors as well as social and environmental components were employed to determine the criteria for decision making. Fuzzy theory was employed to consider the uncertainties in the climate change scenarios and the weights of the performance value. All alternatives were evaluated using the fuzzy TOPSIS method. In addition, statistical method and decision making methods under complete uncertainty were used for robust decision making. As a result, ranking the alternatives using the fuzzy TOPSIS method and robust approach such as maximin, maximax, Hurwicz and equal likelihood criterion mitigated the level of uncertainty and ambiguity in each alternative. The finding of this study can be helpful in prioritizing water resource management projects considering various climate change scenarios.

Recovery of high-purity phosphoric acid from the waste acids in semiconductor manufacturing process (반도체(半導體) 제조공정(製造工程)에서 발생하는 혼산폐액(混酸廢液)으로부터 고순도(高純度) 인산회수(燐酸回收))

  • Park, Sung-Kook;Roh, Yu-Mi;Lee, Sang-Gil;Kim, Ju-Yup;Shin, Chang-Hoon;Kim, Jun-Young;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.26-32
    • /
    • 2006
  • The waste solution discharged from the LCD manufacturing process contains acids like nitric, acetic and phosphoric acid and metal ions such as Al, Mo and other impurities. It is important to remove impurities less than 1 ppm in phosphoric acid to reuse as an etchant because the residual impurities even in sub-ppm concentration in semiconductor materials play a major role on the electronic properties. In this study, a mixed system of solvent extraction, diffusion dialysis and ion-exchange was developed to commercialize in an efficient system fur recovering the high-purity phosphoric acid. By vacuum evaporation, almost 99% of nitric and acetic acid was removed. And by solvent extraction method with tri-octyl phosphate (TOP) as an extractant, the removal of acetic and nitric acid from the acid mixture was achieved effectively at the ratio A/O=1/3 with 4th stage of extraction stage. About 97.5% of Al and 36.7% of Mo were removed by diffusion dialysis. Essentially almost complete removal of metal ions and purification of high-purity phosphoric acid could be obtained by using ion exchange.

Recovery of phosphoric acid from the waste acids in semiconductor manufacturing process (반도체 제조공정에서 발생하는 혼산폐액으로부터 고순도 인산 회수)

  • Park, Sung-Kook;Roh, Yu-Mi;Lee, Sang-Gil;Kim, Ju-Yup;Shin, Chang-Hoon;Ahn, Jae-Woo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.90-94
    • /
    • 2006
  • The waste solution discharged from the LCD manufacturing process contains acids like nitric, acetic and phosphoric acid and metal ions such as Al, Mo and other impurities. It is important to removal of impurities to tess than 1ppm in phosphoric acid to reuse as an etchant because the residual impurities even in sub-ppm concentration in semiconductor materials play a major role on the electronic properties. In this study, we have been clearly established that a mixed system of solvent extraction, diffusion dialysis and ion-exchange technique, which made individually the most of characteristics is developed to commercialize in an efficient system for recovering the high-purity phosphoric acid. By applying vacuum evaporation, the yield of the process are almost 99% removal of nitric acid and acetic acid was achieved. And by applying the solvent extraction method with tri-octyl phosphate(TOP) as an extractant, the removal of acetic and nitric acid from the acid mixture was achieved effectively at the ratio O/A=1/3 with four stages and the stripping of nitric acid from organic phase is attained at a ration of O/A=1 with six stages by distilled water. About 97% and 76% removal of Al and Mo were achieved by diffusion dialysis. Essentially complete less than 1ppm removal of Al, Mo by using ion exchange ion resin and purification of the phosphoric acid was obtain.

  • PDF

A Classification and Extraction Method of Object Structure Patterns for Framework Hotspot Testing (프레임워크 가변부위 시험을 위한 객체 구조 패턴의 분류 및 추출 방법)

  • Kim, Jang-Rae;Jeon, Tae-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.7
    • /
    • pp.465-475
    • /
    • 2002
  • An object-oriented framework supports efficient component-based software development by providing a flexible architecture that can be decomposed into easily modifiable and composable classes. Object-oriented frameworks require thorough testing as they are intended to be reused repeatedly In developing numerous applications. Furthermore, additional testing is needed each time the framework is modified and extended for reuse. To test a framework, it must be instantiated into a complete, executable system. It is, however, practically impossible to test a framework exhaustively against all kinds of framework instantiations, as possible systems into which a framework can be configured are infinitely diverse. If we can classify possible configurations of a framework into a finite number of groups so that all configurations of a group have the same structural or behavioral characteristics, we can effectively cover all significant test cases for the framework testing by choosing a representative configuration from each group. This paper proposes a systematic method of classifying object structures of a framework hotspot and extracting structural test patterns from them. This paper also presents how we can select an instance of object structure from each extracted test pattern for use in the frameworks hotspot testing. This method is useful for selection of optimal test cases and systematic construction of executable test target.

Key Methodologies to Effective Site-specific Accessment in Contaminated Soils : A Review (오염토양의 효과적 현장조사에 대한 주요 방법론의 검토)

  • Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.383-397
    • /
    • 1999
  • For sites to be investigated, the results of such an investigation can be used in determining foals for cleanup, quantifying risks, determining acceptable and unacceptable risk, and developing cleanup plans t hat do not cause unnecessary delays in the redevelopment and reuse of the property. To do this, it is essential that an appropriately detailed study of the site be performed to identify the cause, nature, and extent of contamination and the possible threats to the environment or to any people living or working nearby through the analysis of samples of soil and soil gas, groundwater, surface water, and sediment. The migration pathways of contaminants also are examined during this phase. Key aspects of cost-effective site assessment to help standardize and accelerate the evaluation of contaminated soils at sites are to provide a simple step-by-step methodology for environmental science/engineering professionals to calculate risk-based, site-specific soil levels for contaminants in soil. Its use may significantly reduce the time it takes to complete soil investigations and cleanup actions at some sites, as well as improve the consistency of these actions across the nation. To achieve the effective site assessment, it requires the criteria for choosing the type of standard and setting the magnitude of the standard come from different sources, depending on many factors including the nature of the contamination. A general scheme for site-specific assessment consists of sequential Phase I, II, and III, which is defined by workplan and soil screening levels. Phase I are conducted to identify and confirm a site's recognized environmental conditions resulting from past actions. If a Phase 1 identifies potential hazardous substances, a Phase II is usually conducted to confirm the absence, or presence and extent, of contamination. Phase II involve the collection and analysis of samples. And Phase III is to remediate the contaminated soils determined by Phase I and Phase II. However, important factors in determining whether a assessment standard is site-specific and suitable are (1) the spatial extent of the sampling and the size of the sample area; (2) the number of samples taken: (3) the strategy of taking samples: and (4) the way the data are analyzed. Although selected methods are recommended, application of quantitative methods is directed by users having prior training or experience for the dynamic site investigation process.

  • PDF