• Title/Summary/Keyword: Complementary FET (CFET)

Search Result 2, Processing Time 0.015 seconds

Complementary FET-The Future of the Semiconductor Transistor (Complementary FET로 열어가는 반도체 미래 기술)

  • S.H. Kim;S.H. Lee;W.J. Lee;J.W. Park;D.W. Suh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.52-61
    • /
    • 2023
  • With semiconductor scaling approaching the physical limits, devices including CMOS (complementary metal-oxide-semiconductor) components have managed to overcome yet are currently struggling with several technical issues like short-channel effects. Evolving from the process node of 22 nm with FinFET (fin field effect transistor), state-of-the-art semiconductor technology has reached the 3 nm node with the GAA-FET (gate-all-around FET), which appropriately addresses the main issues of power, performance, and cost. Technical problems remain regarding the foundry of GAA-FET, and next-generation devices called post-GAA transistors have not yet been devised, except for the CFET (complementary FET). We introduce a CFET that spatially stacks p- and n-channel FETs on the same footprint and describe its structure and fabrication. Technical details like stacking of nanosheets, special spacers, hetero-epitaxy, and selective recess are more thoroughly reviewed than in similar articles on CFET fabrication.

Design Aspects and Parasitic Effects on Complementary FETs (CFETs) for 3nm Standard Cells and Beyond (3 나노미터와 미래공정을 위한 상호보완 FET 표준셀의 설계와 기생성분에 관한 연구)

  • Song, Taigon
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.845-852
    • /
    • 2020
  • Developing standard cells for 3nm and beyond requires significant advances in the device and interconnect technology. Thus, it is very important to quantify the impact of the new technology in various aspects. In this paper, we perform a through analysis on the impact of Buried Power Rail (BPR) and Complementary FET (CFET) in the perspective of cell area and parasitics such as capacitance. We emphasize that CFET is a technology that realizes 4T and beyond for standard cell designs, but significant capacitance increases (+18.0%), compared to its counterpart technology (FinFET) cell, due to the increase of cell height in the Z-direction.