• Title/Summary/Keyword: Competitiveness evaluation index

Search Result 72, Processing Time 0.017 seconds

The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms (다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구)

  • Kim, Jeonghun;Kim, Min Yong;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • Big data is creating in a wide variety of fields such as medical care, manufacturing, logistics, sales site, SNS, and the dataset characteristics are also diverse. In order to secure the competitiveness of companies, it is necessary to improve decision-making capacity using a classification algorithm. However, most of them do not have sufficient knowledge on what kind of classification algorithm is appropriate for a specific problem area. In other words, determining which classification algorithm is appropriate depending on the characteristics of the dataset was has been a task that required expertise and effort. This is because the relationship between the characteristics of datasets (called meta-features) and the performance of classification algorithms has not been fully understood. Moreover, there has been little research on meta-features reflecting the characteristics of multi-class. Therefore, the purpose of this study is to empirically analyze whether meta-features of multi-class datasets have a significant effect on the performance of classification algorithms. In this study, meta-features of multi-class datasets were identified into two factors, (the data structure and the data complexity,) and seven representative meta-features were selected. Among those, we included the Herfindahl-Hirschman Index (HHI), originally a market concentration measurement index, in the meta-features to replace IR(Imbalanced Ratio). Also, we developed a new index called Reverse ReLU Silhouette Score into the meta-feature set. Among the UCI Machine Learning Repository data, six representative datasets (Balance Scale, PageBlocks, Car Evaluation, User Knowledge-Modeling, Wine Quality(red), Contraceptive Method Choice) were selected. The class of each dataset was classified by using the classification algorithms (KNN, Logistic Regression, Nave Bayes, Random Forest, and SVM) selected in the study. For each dataset, we applied 10-fold cross validation method. 10% to 100% oversampling method is applied for each fold and meta-features of the dataset is measured. The meta-features selected are HHI, Number of Classes, Number of Features, Entropy, Reverse ReLU Silhouette Score, Nonlinearity of Linear Classifier, Hub Score. F1-score was selected as the dependent variable. As a result, the results of this study showed that the six meta-features including Reverse ReLU Silhouette Score and HHI proposed in this study have a significant effect on the classification performance. (1) The meta-features HHI proposed in this study was significant in the classification performance. (2) The number of variables has a significant effect on the classification performance, unlike the number of classes, but it has a positive effect. (3) The number of classes has a negative effect on the performance of classification. (4) Entropy has a significant effect on the performance of classification. (5) The Reverse ReLU Silhouette Score also significantly affects the classification performance at a significant level of 0.01. (6) The nonlinearity of linear classifiers has a significant negative effect on classification performance. In addition, the results of the analysis by the classification algorithms were also consistent. In the regression analysis by classification algorithm, Naïve Bayes algorithm does not have a significant effect on the number of variables unlike other classification algorithms. This study has two theoretical contributions: (1) two new meta-features (HHI, Reverse ReLU Silhouette score) was proved to be significant. (2) The effects of data characteristics on the performance of classification were investigated using meta-features. The practical contribution points (1) can be utilized in the development of classification algorithm recommendation system according to the characteristics of datasets. (2) Many data scientists are often testing by adjusting the parameters of the algorithm to find the optimal algorithm for the situation because the characteristics of the data are different. In this process, excessive waste of resources occurs due to hardware, cost, time, and manpower. This study is expected to be useful for machine learning, data mining researchers, practitioners, and machine learning-based system developers. The composition of this study consists of introduction, related research, research model, experiment, conclusion and discussion.

A Study on the Characteristics of Enterprise R&D Capabilities Using Data Mining (데이터마이닝을 활용한 기업 R&D역량 특성에 관한 탐색 연구)

  • Kim, Sang-Gook;Lim, Jung-Sun;Park, Wan
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • As the global business environment changes, uncertainties in technology development and market needs increase, and competition among companies intensifies, interests and demands for R&D activities of individual companies are increasing. In order to cope with these environmental changes, R&D companies are strengthening R&D investment as one of the means to enhance the qualitative competitiveness of R&D while paying more attention to facility investment. As a result, facilities or R&D investment elements are inevitably a burden for R&D companies to bear future uncertainties. It is true that the management strategy of increasing investment in R&D as a means of enhancing R&D capability is highly uncertain in terms of corporate performance. In this study, the structural factors that influence the R&D capabilities of companies are explored in terms of technology management capabilities, R&D capabilities, and corporate classification attributes by utilizing data mining techniques, and the characteristics these individual factors present according to the level of R&D capabilities are analyzed. This study also showed cluster analysis and experimental results based on evidence data for all domestic R&D companies, and is expected to provide important implications for corporate management strategies to enhance R&D capabilities of individual companies. For each of the three viewpoints, detailed evaluation indexes were composed of 7, 2, and 4, respectively, to quantitatively measure individual levels in the corresponding area. In the case of technology management capability and R&D capability, the sub-item evaluation indexes that are being used by current domestic technology evaluation agencies were referenced, and the final detailed evaluation index was newly constructed in consideration of whether data could be obtained quantitatively. In the case of corporate classification attributes, the most basic corporate classification profile information is considered. In particular, in order to grasp the homogeneity of the R&D competency level, a comprehensive score for each company was given using detailed evaluation indicators of technology management capability and R&D capability, and the competency level was classified into five grades and compared with the cluster analysis results. In order to give the meaning according to the comparative evaluation between the analyzed cluster and the competency level grade, the clusters with high and low trends in R&D competency level were searched for each cluster. Afterwards, characteristics according to detailed evaluation indicators were analyzed in the cluster. Through this method of conducting research, two groups with high R&D competency and one with low level of R&D competency were analyzed, and the remaining two clusters were similar with almost high incidence. As a result, in this study, individual characteristics according to detailed evaluation indexes were analyzed for two clusters with high competency level and one cluster with low competency level. The implications of the results of this study are that the faster the replacement cycle of professional managers who can effectively respond to changes in technology and market demand, the more likely they will contribute to enhancing R&D capabilities. In the case of a private company, it is necessary to increase the intensity of input of R&D capabilities by enhancing the sense of belonging of R&D personnel to the company through conversion to a corporate company, and to provide the accuracy of responsibility and authority through the organization of the team unit. Since the number of technical commercialization achievements and technology certifications are occurring both in the case of contributing to capacity improvement and in case of not, it was confirmed that there is a limit in reviewing it as an important factor for enhancing R&D capacity from the perspective of management. Lastly, the experience of utility model filing was identified as a factor that has an important influence on R&D capability, and it was confirmed the need to provide motivation to encourage utility model filings in order to enhance R&D capability. As such, the results of this study are expected to provide important implications for corporate management strategies to enhance individual companies' R&D capabilities.