• 제목/요약/키워드: Compensation structure

Search Result 545, Processing Time 0.028 seconds

An Improved Rayleigh Fading Compensation Algorithm with Modified Sinc Interpolation (수정된 Sinc 보간법을 이용한 새로운 Rayleigh 페이딩 보상 알고리즘)

  • 이창재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10A
    • /
    • pp.1492-1498
    • /
    • 2000
  • Pilot symbol aided modulation (PSAM) using the conventional sinc interpolation (CSI) achieves nearly the same BER performance as Caver' optimal Wiener interpolation but with much less complexity. The CSI, however, has to use a non-rectangular window function that is applied to the sinc function to smooth out the abrupt truncation of rectangular window. In this paper, we propose the modified sinc interpolation (MSI). With the weighting factor the MSI scheme with no window has almost the same BER performance as the CSI scheme using window, In addition, if we use the MSI with a window its BER performance gets close to that of the theoretical one. We assume the multicarrier QAM system and an optimal frame structure for performance evaluation.

  • PDF

Proposing a New Method for Calculating Reactive Power Service Charges using the Reactive Power Market

  • Ro, Kyoung-Soo;Park, Sung-Jin
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.262-267
    • /
    • 2004
  • With the advent of electric power systems moving from a vertically integrated structure to a deregulated environment, calculating reactive power service charges has become a new and challenging theme for market operators. This paper examines various methods for reactive power management adopted throughout various deregulated foreign and domestic markets and then proposes an innovative method to calculate reactive power service charges using a reactive power market in a wholesale electricity market. The reactive power market is operated based on bids from the generating sources and it settles on uniform prices by running the reactive OPF programs of the day-ahead electricity market. The proposed method takes into account recovering not only the costs of installed capacity but also the lost opportunity costs incurred by reducing active power output to increase reactive power production. Based on the result of the reactive OPF program, the generators that produce reactive power within the obligatory range do not make payments whereas the generators producing reactive power beyond the obligatory range receive compensation by the price determined in the market. A numerical sample study is carried out to illustrate the processes and appropriateness of the proposed method.

Optimal Design of Volume Reduction for Capacitive-coupled Wireless Power Transfer System using Leakage-enhanced Transformer (누설집중형 변압기를 이용한 전계결합형 무선전력전송 시스템의 부피저감 최적설계 연구)

  • Choi, Hee-Su;Jeong, Chae-Ho;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.469-475
    • /
    • 2017
  • Using impedance matching techniques as a way to increase system power transferability in capacitive wireless power transmission has been widely investigated in conventional studies. However, these techniques tend to increase the circuit volume and thus counterbalance the advantage of the simplicity in the energy link structure. In this paper, a compact circuit topology with one leakage-enhanced transformer is proposed in order to minimize the circuit volume for the capacitive power transfer system. This topology achieves a reactive compensation, and the system quality factor value can be reduced by the turn ratio. As a result, this topology not only reduces the overall system volume but also minimizes the voltage stress of the link capacitor. An optimal design guideline for the leakage-enhanced transformer is also presented. The advantages of the proposed scheme over the conventional method in terms of power efficiency and circuit volume are revealed through an analytic comparison. The feasibility of applying the new topology is also verified by conducting 50 W hardware tests.

A Fuel Cell System with Z-Source Inverter and Ultracapacitors (Z-소스 인버터와 울트라커패시터를 이용한 연료전지 시스템)

  • Kim, Yoon-Ho;Lee, Uk-Young;Kim, Soo-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • When input parameters like gas volume or load of the fuel cell system is changed, the fuel cell system can generate transient voltage disturbances. In this paper, a fuel cell system with Z-source inverter and ultracapacitors for voltage disturbance compensation is proposed. The structure of Z-source inverter is simple. It has unique features that can boost/buck input voltage with a DC/DC converter using only a modified switching pattern. The characteristics of the proposed topologies for the fuel cell system with Z-source inverter and ultracapacitors are analyzed using simulation, and verified by experiments. The simulation and experimental results show that the proposed system is capable of operating with stable response to the system transient and voltage disturbances.

Torque-Angle-Based Direct Torque Control for Interior Permanent-Magnet Synchronous Motor Drivers in Electric Vehicles

  • Qiu, Xin;Huang, Wenxin;Bu, Feifei
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.964-974
    • /
    • 2013
  • A modified direct torque control (DTC) method based on torque angle is proposed for interior permanent-magnet synchronous motor (IPMSM) drivers used in electric vehicles (EVs). Given the close relationship between torque and torque angle, proper voltage vectors are selected by the proposed DTC method to change the torque angle rapidly and regulate the torque quickly. The amplitude and angle of the voltage vectors are determined by the torque loop and stator flux-linkage loop, respectively, with the help of the position of the stator flux linkage. Furthermore, to satisfy the torque performance request of EVs, the nonlinear dead-time of the invertor caused by parasitic capacitances is considered and compensated to improve steady torque performance. The stable operation region of the IPMSM DTC driver for voltage and current limits is investigated for reliability. The experimental results prove that the proposed DTC has good torque performance with a brief control structure.

Control of FES Cycling Considering Muscle Fatigue (근피로를 고려한 FES 싸이클링의 제어)

  • Kim Chul-seung;Hase Kazunori;Kang Gon;Eom Gwang-moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.207-212
    • /
    • 2005
  • The purpose of this work is to develop the FES controller that can cope with the muscle fatigue which is one of the most important problems of current FES (Functional Electrical Stimulation). The feasibility of the proposed FES controller was evaluated by simulation. We used a fitness function to describe the effect of muscle fatigue and recovery process. The FES control system was developed based on the biological neuronal system. Specifically, we used PD (Proportional and Derivative) and GC (Gravity Compensation) control, which was described by the neuronal feedback structure. It was possible to control of multiple joints and muscles by using the phase-based PD and GC control method and the static optimization. As a result, the proposed FES control system could maintain the cycling motion in spite of the muscle fatigue. It is expected that the proposed FES controller will play an important role in the rehabilitation of SCI patient.

Compensation of Inclined Rotating Axis Using Unsymmetric Groove Patterns (비대칭 Groove를 이용한 FDB 회전축의 기울기 보상)

  • Lee, Nam-Hun;Han, Jae-Hyuk;Oh, Dong-Ho;Kim, Chul-Soon;Byun, Yong-Kyu;Koo, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.582-585
    • /
    • 2004
  • Most of hard disk drives currently employ fluid dynamic bearing (FDB) for their rotor support. Stiffness of the FDB is affected by many design factors such as bearing clearance, fluid viscosity, and rotational speed. For the high rotating speed HDDs stiffness of the rotor is normally high enough to accomodate load disturbances. However small form factor HDDs that are to be operated in low power consumption are often designed with low stiffness rotors. Although the low stiffness rotor clearly benefits low power operation, it could damage the entire motor structure or head disk interface even by a light mechanical load disturbance such as shock or vibration. In addition, since a single channel HDD does not provide gram load equilibrium in axial direction the rotor could be tilted and make a hard contact to stator. A non-symmetric groove pattern could successfully compensate the tilted rotor angle during operation.

  • PDF

SOME EVIDENCE REGARDING REPAIRING, RECOVERY AND OVER-COMPENSATING PROCESSES DURING ONTOGENESIS, AFTERX-RAY-IRRADTATION OF BEAN SEEDS

  • Korosi, F.;Jezierska-Szabo, E.;Laszlo, P.;Felfoldi, J.
    • Korean Journal of Organic Agriculture
    • /
    • v.3 no.1
    • /
    • pp.11-22
    • /
    • 1994
  • Exposing plant organs to high doses of ionizing irradiation, penetrating into the plant tis-sues and cells, along the track structure of particles, lesions, and sublesions are formed on the molecules and organelles. As a result, disorders in the growth and development as well as chlorophyll-deficiency symptoms occur. The time scale of their reparation, recovery and over compensation during ontogenesis, constitutes a question of high theoretical and practical importanced, with special regard to nuclear fallout. With an aim to model the “ut supra”stated phenomena, the seeds of bean, Echo elit licensed variety, were irradiated by 300 Gy dose of X-ray-irradiation (120 kV:4.5 mA). According to the data obtained, the biosynthesis of photosynthetic pigments, will have been completed by the beginning of flowering. In consequence of the overcompensation of the repairing processes, the organs of plants developed from irradiated seeds, showed a partly differing correlative growth, compared to those of control plants. In order to characterize the vivo response of radiation-injured plants, a new method and approach were used. The changes of the electric capacitance of the plants during their ontogenesis, were continously monitored and recorede via a computer-aided and controlled measurement. In view of the data collected in such a way, the repairing plants may respond more quickly and intensively to the changes of environmental factors.

  • PDF

Laser based impedance measurement for pipe corrosion and bolt-loosening detection

  • Yang, Jinyeol;Liu, Peipei;Yang, Suyoung;Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • This study proposes a laser based impedance measurement system and impedance based pipe corrosion and bolt-loosening monitoring techniques under temperature variations. For impedance measurement, the laser based impedance measurement system is optimized and adopted in this paper. First, a modulated laser beam is radiated to a photodiode, converting the laser beam into an electric signal. Then, the electric signal is applied to a MFC transducer attached on a target structure for ultrasonic excitation. The corresponding impedance signals are measured, re-converted into a laser beam, and radiated back to the other photodiode located in a data interrogator. The transmitted impedance signals are treated with an outlier analysis using generalized extreme value (GEV) statistics to reliably signal off structural damage. Validation of the proposed technique is carried out to detect corrosion and bolt-loosening in lab-scale carbon steel elbow pipes under varying temperatures. It has been demonstrated that the proposed technique has a potential to be used for structural health monitoring (SHM) of pipe structures.

A Study on the Compensation of the Inductance Parameters of Interior Permanent-Magnet Synchronous Motors Affected by the Magnet Size

  • Jang, Ik-Sang;Lee, Hyung-Woo;Kim, Won-Ho;Cho, Su-Yeon;Kim, Mi-Jung;Lee, Ki-Doek;Lee, Ju
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.74-76
    • /
    • 2011
  • Interior permanent-magnet synchronous motors (IPMSMs) produce both magnetic and reluctance torques. The reluctance torque is due to the difference between the d- and q-axis inductances based on the geometric rotor structure. The steady-state performance analysis and precise control of the IPMSMs greatly depend on the accurate determination of the parameters. The three essential parameters of the IPMSMs are the armature flux linkage of the permanent magnet, the d-axis inductance, and the q-axis inductance. In the basic design step of an IPMSM, the inductance parameters are very important for determining the motor characteristics, such as the input voltage, torque, and efficiency. Thus, it is very important to accurately estimate the values of the motor inductances. The inductance parameters of IPMSMs have nonlinear characteristics along the magnet size because the iron core is saturated by the magnet and armature reaction fluxes. In this study, the inductance parameters were calculated using both the magnetic-equivalent-circuit method and the finite-element method (FEM). Then the calculated parameters were compensated by the saturation coefficient function, which was also calculated via the magnetic-equivalent-circuit method and FEM.