• Title/Summary/Keyword: Compensation film

Search Result 131, Processing Time 0.032 seconds

A Video Data Correction Method for the Non-Uniform Electro-Optical Characteristics of the Pixels in AMOLED Displays

  • Min, Ung-Gyu;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.80-86
    • /
    • 2009
  • The variation of the electrical characteristics of thin-film transistors (TFTs) causes a non-uniform image quality problem, and the differential aging of organic light-emitting diode (OLED) devices causes an image-sticking problem. A video data correction method is proposed herein as an effective solution to the non-uniform electro-optical characteristics of the pixels in activematrix organic light-emitting diode (AMOLED) displays. The results of the simulation that was conducted show that the proposed method successfully senses the electrical characteristics of TFTs and the degradation of OLEDs and effectively compensates for them.

Electro-optic Characteristics of Reflective Optically Compensated Splay Cell (반사형 Optically Compensated Splay 셀의 전기-광학 특성)

  • 송제훈;오상민;이종문;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.983-987
    • /
    • 2004
  • We have studied electro-optic characteristics of reflective optically compensated splay (R-OCS) cell. The initial configuration of this cell is in splay form such that a mid director lies parallel to the substrate and around it hybrid structure is formed symmetrically so the optically compensation effect exists. Optimized optical configurations could be achieved by using a single polarizer, a quarter-wave film and a cell with quarter-wane retardation. The optimal cell retardation is 0.34 ${\mu}$m, allowing to have large cell gap. The cell provides high contrast ratio of 80:1 at normal direction and the region with contrast ratio over 5:1 covert up to 160$^{\circ}$ horizontally and vertically at all wavelength range.

Micro Grooving of Glass Using Micro Abrasive Jet Machining (Micro Abrasive Jet Machining을 이용한 유리의 미세 홈 가공)

  • Choi, Jong-Soon;Park, Keong-Ho;Park, Dong-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.178-183
    • /
    • 2001
  • Abrasive jet machining(AJM) process is similar to the sand blasting and effectively removes hard and brittle materials. AJM has applied to rough working such as debarring and rough finishing. As the need for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM is developed, and has become the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro grooving of glass. Diameter of hole and width of line in grooving is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro grooving of glass, but the size of machined groove increased about 2~4${\mu}{\textrm}{m}$. With the fine tuning of masking process and compensation of film wear. this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD.

  • PDF

Giant magnetoresistance of new macroscopic ferrimagnets in the system Co-TbN

  • Kim, T. W.;H. B. Chung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.45-48
    • /
    • 1998
  • We first report the GMR effect of new macroscopic ferrimagnet, Co-TbN. The Co-TbN system demonstrates typical macroscopic ferrimagnet properties which are a magnetic compensation Point and negative giant magnetoresistance (GMR) which is caused by the spin scattering contribution quite different from those of ordinary GMR materials. The Co-TbN system with 32 % TbN composition showed 0.72 % GMR in fields up to 8 kOe at room temperature and 9 % GMR at 250 K in 40 kOe. The GMR effect in the Co-TbN system increases with increasing temperature, which is due to the increase of ferromagnetic alignment of the Co and TbN in a field caused by the decrease of exchange coupling by temperature.

  • PDF

Monolithic Ambient-Light Sensor System on a Display Panel for Low Power Mobile Display (저 전력 휴대용 디스플레이를 위한 패널 일체형 광 센서 시스템)

  • Woo, Doo Hyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.48-55
    • /
    • 2016
  • Ambient-light sensor system, which changes the brightness of a display as ambient light change, was studied to reduce the power consumption of the mobile applications such as note PC, tablet PC and smart phone. The ambient-light sensor system should be integrated on a display panel to improve the complexity and cost of mobile applications, so the ambient-light sensor and readout circuit was integrated on a display panel using low-temperature poly-silicon thin film transistors (LTPS-TFT). We proposed the new compensation method to correct the panel-to-panel variation of the ambient-light sensors, without additional equipment. We designed and investigated the new readout circuit with the proposed compensation method and the analog-to-digital converter for the final digital output of ambient light. The readout circuit has very simple structure and control timing to be integrated with LTPS-TFT, and the input luminance ranges from 10 to 10,000 lux. The readout rate is 100 Hz, and maximum differential non-uniformity with 20 levels of the final output below 0.5 LSB.

Temperature Compensation and Characteristics of Non-dispersive Infrared Alcohol Sensor According to the Intensity of Light (입사광량의 조절과 이에 따른 비분산 적외선 알코올 센서의 온도 특성과 보정)

  • Kim, JinHo;Cho, HeeChan;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2018
  • In this paper, we describe the thermal characteristics of the output voltages of ethanol gas sensor according to the amount of radiation incident on the infrared sensors located at each focal point of two elliptical waveguides. In order to verify the output characteristics of the gas sensor according to the amount of incident light on the infrared sensor, two combinations of sensor modules were fabricated. Hydrophobic thin film is deposited on one of the reflectors of sensor modules and one of the two infrared sensors was equipped with a hollow disk (10 Ø), and the temperature characteristics of the infrared sensor equipped with the hollow disk (10 Ø) and the infrared sensor without the disk were tested. The temperature was varied from 253 K to 333 K at 10 K intervals based on 298 K. The properties of ethanol gas sensor have been identified with respect to varying temperature for a range of ethanol concentration from 0 ppm to 500 ppm. In the case of an infrared sensor equipped with a hollow disk (10 Ø), the output voltage of the sensor decreased by 0.8 mV and 1 mV, respectively, as the temperature increased. Conversely, the output voltage of the diskless infrared sensor showed an average increase of 67 mV and 57 mV as the temperature increased. The ethanol concentrations estimated on the basis of results show an error of more than 10 % for less than 100 ppm concentration. However, if the ethanol concentration exceeds 100 ppm, the gas concentration can be estimated within the range of ${\pm}10%$.

An OLED Pixel Circuit Compensating Threshold Voltage Variation of n-channel OLED·Driving TFT (n-채널 OLED 구동 박막 트랜지스터의 문턱전압 변동을 보상할 수 있는 OLED 화소회로)

  • Chung, Hoon-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.3
    • /
    • pp.205-210
    • /
    • 2022
  • A novel OLED pixel circuit is proposed in this paper that uses only n-type thin-film transistors(TFTs) to improve the luminance non-uniformity of the AMOLED display caused by the threshold voltage variation of an OLED driving TFT. The proposed OLED pixel circuit is composed of 6 n-channel TFTs and 2 capacitors. The operation of the proposed OLED pixel circuit consists of the capacitor initializing period, threshold voltage sensing period of an OLED·driving TFT, image data voltage writing period, and OLED·emitting period. As a result of SmartSpice simulation, when the threshold voltage of·OLED·driving TFT varies from 1.2 V to 1.8 V, the proposed OLED pixel circuit has a maximum current error of 5.18 % at IOLED = 1 nA. And, when the OLED cathode voltage rises by 0.1 V, the proposed OLED pixel circuit has very little change in the OLED current compared to the conventional OLED pixel circuit. Therefore, the proposed pixel circuit exhibits superior compensation characteristics for the threshold voltage variation of an OLED driving TFT and the rise of the OLED cathode voltage compared to the conventional OLED pixel circuit.

Prediction of movie audience numbers using hybrid model combining GLS and Bass models (GLS와 Bass 모형을 결합한 하이브리드 모형을 이용한 영화 관객 수 예측)

  • Kim, Bokyung;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.447-461
    • /
    • 2018
  • Domestic film industry sales are increasing every year. Theaters are the primary sales channels for movies and the number of audiences using the theater affects additional selling rights. Therefore, the number of audiences using the theater is an important factor directly linked to movie industry sales. In this paper we consider a hybrid model that combines a multiple linear regression model and the Bass model to predict the audience numbers for a specific day. By combining the two models, the predictive value of the regression analysis was corrected to that of the Bass model. In the analysis, three films with different release dates were used. All subset regression method is used to generate all possible combinations and 5-fold cross validation to estimate the model 5 times. In this case, the predicted value is obtained from the model with the smallest root mean square error and then combined with the predicted value of the Bass model to obtain the final predicted value. With the existence of past data, it was confirmed that the weight of the Bass model increases and the compensation is added to the predicted value.

Thin Film Transistor Backplanes on Flexible Foils

  • Colaneri, Nick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.529-529
    • /
    • 2006
  • Several laboratories worldwide have demonstrated the feasibility of producing amorphous silicon thin film transistor (TFT) arrays at temperatures that are sufficiently low to be compatible with flexible foils such as stainless steel or high temperature polyester. These arrays can be used to fabricate flexible high information content display prototypes using a variety of different display technologies. However, several questions must be addressed before this technology can be used for the economic commercial production of displays. These include process optimization and scale-up to address intrinsic electrical instabilities exhibited by these kinds of transistor device, and the development of appropriate techniques for the handling of flexible substrate materials with large coefficients of thermal expansion. The Flexible Display Center at Arizona State University was established in 2004 as a collaboration among industry, a number of Universities, and US Government research laboratories to focus on these issues. The goal of the FDC is to investigate the manufacturing of flexible TFT technology in order to accelerate the commercialization of flexible displays. This presentation will give a brief outline of the FDC's organization and capabilities, and review the status of efforts to fabricate amorphous silicon TFT arrays on flexible foils using a low temperature process. Together with industrial partners, these arrays are being integrated with cholesteric liquid crystal panels, electrophoretic inks, or organic electroluminescent devices to make flexible display prototypes. In addition to an overview of device stability issues, the presentation will include a discussion of challenges peculiar to the use of flexible substrates. A technique has been developed for temporarily bonding flexible substrates to rigid carrier plates so that they may be processed using conventional flat panel display manufacturing equipment. In addition, custom photolithographic equipment has been developed which permits the dynamic compensation of substrate distortions which accumulate at various process steps.

  • PDF

Dielectric and Pyroelectric Properties of Lead-Free Sodium Bismuth Titanate Thin Films Due to Excess Sodium and Bismuth Addition

  • Kang, Dong Heon;Kang, Yong Hee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.25-30
    • /
    • 2013
  • Pb-free ferroelectric $(Na_{0.5}Bi_{0.5})TiO_3$ (NBT) thin films were prepared by a modified sol-gel process. Their structural, dielectric and pyroelectric properties were investigated as a function of the excess Na/Bi ratio and the annealing temperature. In the case of thin films containing no excess Na and Bi, only partial amounts of the perovskite NBT were crystallized, where the films consisted mainly of the pyrochlore phase of $Bi_2Ti_2O_7$ for annealing conditions of $600{\sim}800^{\circ}C$. With increasing excess Na/Bi ratio, the proportion of the perovskite phase effectively increased due to the compensation of the volatile Na and Bi components. For a Na/Bi ratio of 2.0, the thin film with single NBT perovskite phase was obtained within XRD detection limit after annealing at $700^{\circ}C$ for 10 min and it showed the excellent dielectric properties, ${\varepsilon}r$ of ~550 and tan ${\delta}$ of 0.03. While these properties were degraded for Na/Bi ratio of 2.5 despite the existence of pure perovskite phase. The NBT thin film with Na/Bi ratio of 2.0 are also promising candidates for applications requiring pyroelectric devices because it was found to have pyroelectric coefficients of $1.3{\sim}7nC/cm^2K$ in the temperature range of $30{\sim}100^{\circ}C$.